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Basic Principle 

      （Bulk-Boundary relation）：

AdS/CFT

Classical limit Large N + Strong coupling 

CFTGravity ZZ =

Gravity (String theory) 
on D+1 dim.  AdS 

(anti de-Sitter space)

Conformal Field Theory (CFT)  
on D dim. Minkowski spacetime

General relativity 
with Λ＜0

Strongly interacting 
Quantum Field Theories

=
Massless (gapless) theory

Partition Function

① Holographic Entanglement Entropy
(1-1) Holographic Setup: AdS/CFT

[Maldacena 1997]



Gravity 
in Anti de-Sitter space (AdS)
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A Basic Question:  Which region in the AdS does 

encode the `information in a certain region’ of the CFT ? 

Region A in CFTd+1 Region XA in AdSd+2    

Dual ?

B

A XA

AdSd+2

Consider the entanglement entropy  SA  which 
measures  the amount of information ! 



Replica Method

A basic method of calculating EE in QFTs is the replica method.

Below we explain the replica method for two dimensional (2d)

QFTs. Our main target is the analysis for 2d CFTs.

[ Holzhey-Larsen-Wilczek 94,…, Calabrese-Cardy 04]

The replica method is also an important method to 

(often numerically) evaluate EE in higher dimensional QFTs.  

Compute this trace 
as a partition function

(1-2) EE in CFT and Replica Method



In the path-integral formalism, the ground state wave 

function          can be expressed in the path-integral 

formalism as follows:
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We express the reduced density matrix                             :                                = BA Tr

=abA ][
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Finally, we obtain a path integral expression of the trace

as follows:               ( ) kaAbcAabA

n
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In this way, we obtain the following representation

where         is the partition function on the n-sheeted 

Riemann surface         . 

Equally we can regard the partition function          as that of 

a n-replicated CFT on a plane 

cut

Replicated fields

σn σn



EE in 2d CFTs 

Consider the conformal map:

[Calabrese-Cardy 04]

u v

=0 Schwarzian
derivative

n-sheets



Thus for general 2d CFTs with the central charge c, we obtain 

In the end, we obtain

Note: the UV cut off ε is introduced. 

Tr 𝜌𝐴
𝑛 ∝ (𝑢 − 𝑣)−4ℎ𝑡𝑜𝑡 = (𝑢 − 𝑣)−

𝑐
6

(𝑛−1/𝑛).

[Holzhey-Larsen-Wilczek 94]

Renyi Entropy:

Entanglement Entropy:



(1-3) HEE for Static Backgrounds [Ryu-TT 2006]

A

B

Gravity
(AdS)=

For a static asymptotically AdS background, SA can be 
computed from the minimal area surface ΓA:

CFT on 
boundary

Entanglement 
Wedge

𝑺𝑨 = 𝐦𝐢𝐧
𝐀𝐫𝐞𝐚(Γ𝑨)

𝟒𝑮𝑵Γ𝑨 𝚪𝐀
Note: ∂ΓA =∂ A and ΓA is homologous to A. 

This formula was later proved by  
Lewkowycz-Maldacena 2013 based 
on the bulk-bdy relation of AdS/CFT.

AdSd+2CFTd+1



Intuitive Understanding of This Formula

Observer who cannot access B
will find a  “black hole”  at         .

⇒ This BH entropy is the HEE！

𝚪𝐀

Observer

𝚪𝐀

This white region is accessible for 
an observer in A.
⇒ This is called entanglement wedge.

Hidden



Leading divergence and Area law

For a generic choice of       ,  a basic property of AdS gives

where R is the AdS radius. 

Because                    ,  we find 

This agrees with the known area law relation in QFTs.
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Relation to BH Entropy

We can regard the HEE as a generalization of BH 
entropy.

A=total 
system

BH

𝚪𝐀

BH

𝚪𝐀=BH horizon
A

𝚪𝑩

B

AdS BH = CFT at finite temp. ⇒Mixed state: SA≠SB !



General Behavior of HEE (=EE in CFTd+1) [Ryu-TT 06,…]

divergence

 law Area

Agrees with conformal anomaly 

(central charge) in even dim. CFT
A universal quantity (F) which 
characterizes odd dim. CFT.

A



Holographic Proof of Strong Subadditivity(SSA)

     BABCBCAB SSSS ++
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     CABCAB SSSS ++
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
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[Headrick-TT 07]

Algebraic properties in Quantum Information 
⇔ Geometric properties in Gravity

)   :(Note BAAB 
“Triangle inequalities in Geometry = SSA”



Monogamy of Mutual Information 

The holographic mutual information

has a special property called monogamy.

Comments: 

• This property is special to holographic CFTs.

[cf. For massive free fermion QFT:                Casini-Fosco-Huerta 05]

• This property also leads to the Cadney-Linden-Winter 
inequality as well as strong superadditivity of Hol. MI.
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[Hubeny-Rangamani-TT 07]

A generic  Lorentzian asymptotic AdS spacetime is dual to 
a time dependent state |Ψ(t)〉 in the dual CFT.

The entanglement entropy gets time-dependent: 

This is computed by the holographic formula: 

𝜌𝐴 𝑡 = Tr𝐵[| ۧΨ(𝑡) Ψۦ 𝑡 |] 𝑆𝐴 𝑡 .

𝑆𝐴 𝑡 = MinΓ𝐴
ExtΓ𝐴

𝐴(Γ𝐴)

4𝐺𝑁
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(1-4) HEE for Time-dependent Backgrounds



Entanglement Wedges

Which bulk region is dual to a given region A in CFT ?

⇒ Entanglement Wedge  MA    (note: we took a time slice)

MA = A region surrounded by A and ΓA  (on time 

slice)

gravity AdSin       

  CFTin    

MA

A







A ΓA
MA Minimal 

Surface
[Hamilton-Kabat-Lifschytz-Lowe 2006, Czech-
Karczmarek-Nogueira-Raamsdonk 2012, Wall 2012, 
Headrick-Hubeny-Lawrence-Rangamani 2014, 
Jafferis-Lewkowycz-Maldacena-Suh 2015, Dong-
Harlow-Wall 2016, . . . ]



Covariant Definition of EW

ΓAA

Entanglement Wedge
=Domain of dependence 

of MA



EW for Disconnected Subregions

A B
ΣAB

A B

ΣAB= Minimal Surface which divides MAB

into A side and B side

ΓA

ΓB

ΓAB
0):(I =−+= ABBA SSSBA

0):(I BA

MB

MAB

MA

MAB=MA∪MB, ΓAB= ΓA∪ΓB



Entanglement Wedge Cross Section (EWCS)
 

We define a quantity called EW cross section by

Gravity dual conjecture of EWCS

NG4

)Area(
)(E AB

ABW


=

MAB

ΣAB

A B

)(E)(E ABPABW  =

Entanglement of Purification
[Terhal-Horodecki-Leung-Divincenzo quant-ph/0202044]

Note:  When            is a pure 
state,  we simply have 

AB

. SS)(E)(E ABPABW BA === 



First let us explain the purification procedure:

A given density matrix for         : 

We can always describe this state as a pure state by 
extending the Hilbert space:

such that 

Note: there are infinite many ways to do this.

Definition of Entanglement of Purification (EoP)
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CH

DCC HHH →

 .TrD =C



Consider all purifications                of           in the extended 

Hilbert space:

Then,  Entanglement of Purification (EoP) is defined by

Note:     and     

( )
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Entanglement Entropy



Other Conjectures of EWCS

Proposal 2:  Reflected Entropy

Proposal 3:  Odd Entropy

Proposal 4:  Logarithmic negativity
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Question: Ver 3.  Holographic Entropy Formula ?

Minimal areas in Euclidean time dependent 
asymptotically AdS spaces 

=  What kind of QI quantity (Entropy ?) in CFT ?

The answer is Pseudo Entropy ! 

(1-5) Holographic Pseudo Entropy

[Nakata-Taki-Tamaoka-Wei-TT, 2020]



Definition of Pseudo (Renyi) Entropy

Consider two quantum states        and         , and define

the transition matrix:

We decompose the Hilbert space as

and introduce the reduced transition matrix:

ۧ|𝜓 ۧ|𝜑

𝜏
𝜓|𝜑

=
ۧ|𝜓 |𝜑ۦ

|𝜑ۦ ۧ𝜓
.

𝜏𝐴
𝜓|𝜑

= Tr𝐵 𝜏
𝜓|𝜑

.   BAtot HHH =

𝑆(𝑛) 𝜏𝐴
𝜓|𝜑

=
1

1 − 𝑛
logTr 𝜏𝐴

𝜓|𝜑 𝑛
.

𝑆 𝜏𝐴
𝜓|𝜑

= −Tr 𝜏𝐴
𝜓|𝜑

log𝜏𝐴
𝜓|𝜑

.Pseudo Entropy

Renyi Pseudo Entropy



Basic Properties of Pseudo Entropy (PE)

• In general,            is not Hermitian. Thus PE is complex valued.

• If either        or        has no entanglement (i.e. direct product state) , 
then

• We can show

• We can show

• If                    , then                             = Renyi entropy.

ۧ|𝜓 ۧ|𝜑

𝑆(𝑛) 𝜏𝐴
𝜓|𝜑

= 0.

𝑆(𝑛) 𝜏𝐴
𝜓|𝜑

= 𝑆(𝑛) 𝜏𝐴
𝜑|𝜓 †

.

𝑆(𝑛) 𝜏𝐴
𝜓|𝜑

= 𝑆(𝑛) 𝜏𝐵
𝜓|𝜑

.

𝑆(𝑛) 𝜏𝐴
𝜓|𝜑

ۧ|𝜓 = ۧ|𝜑

→“SA=SB”

𝜏𝐴
𝜓|𝜑



Holographic Pseudo Entropy

𝑆 𝜏𝐴
𝜓|𝜑

= MinΓ𝐴

𝐴(Γ𝐴)
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Basic Properties

𝑖 If 𝜌𝐴 𝑖𝑠 𝑝𝑢𝑟𝑒, 𝑆 𝜏𝐴
𝜓|𝜑

=0.

𝑖𝑖 If 𝜓 𝑜𝑟 𝜑 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒𝑑,

𝑆 𝜏𝐴
𝜓|𝜑

=0.

→This follows from AdS/BCFT [TT 2011]

𝑖𝑖𝑖 𝑆 𝜏𝐴
𝜓|𝜑

= 𝑆 𝜏𝐵
𝜓|𝜑

. “SA=SB”



Pseudo Entropy and Quantum Phase Transitions
[Mollabashi-Shiba-Tamaoka-Wei-TT 20, 21]

Basic Properties of Pseudo entropy in QFTs

[1]  Area law

[2]  The difference

is negative if       and       are in a same phase.

∆𝑺 = 𝑺 𝝉𝑨
𝟏|𝟐

+ 𝑺 𝝉𝑨
𝟏|𝟐

− 𝑺 𝝆𝑨
𝟏 − 𝑺 𝝆𝑨

𝟐

 terms),subleading(
A)Area(

~
1

+

−dAS



PE in a 2 dim. free scalar
when we change its mass.

ۧ|𝜓1 ۧ|𝜓2

What happen if they belong to different phases ?
Can ΔS be positive ?



Quantum Ising Chain with a transverse magnetic field

Ψ1→ vacuum of H(J1)
Ψ2→ vacuum of H(J2)

(We always set h=1)

J1=1/2 J1=1 J1=2

J<1   Paramagnetic Phase
J>1 Ferromagnetic Phase

We find
when Ψ1 and Ψ2 are in different phases !

∆𝑺 = 𝑺 𝝉𝑨
𝟏|𝟐

+ 𝑺 𝝉𝑨
𝟏|𝟐

− 𝑺 𝝆𝑨
𝟏 − 𝑺 𝝆𝑨

𝟐 > 𝟎
J2 J2 J2

N=16, NA=8



Heuristic Interpretation

Two gapped phases are 
separated by a gapless phase.

CFT !

Ψ1

Ψ2

A

PE is enhanced ! ∆𝑺 > 𝟎
AdS Dual of 
Gapless Interface

ΓA

The gapless interface (edge state) also occurs in topological orders.
➔Topological pseudo entropy [Nishioka-Taki-TT 2021].



(2-1) BCFT (Boundary Conformal Field Theory)

For special boundary conditions, a part of conformal symmetries 

are preserved, called the boundary conformal field theory (BCFT).         

[Cardy 1984, .., McAvity-Osborn 1995, …  ;   Cond-mat application: Kondo effect]

d dim CFT   :  SO(2,d)            

           Ｕ                             

d dim. BCFT:  SO(2,d-1)                

CFT

x

  0)()( =−
Bdytx zTzTT

B
o
u
n
da

ry t

Energy flux

0 )
~

( =− − BLL nn

Boundary state

CFT

x

Boundary

t

② AdS/BCFT



AdS/CFT AdS/BCFT

Bulk AdSd+1

d+1 dim. 
Gravity
on AdS

d dim. 
CFT

on Rd
=

Q
NM

Boundary

∂M

d+1 dim. 
Gravity
with EOW

d dim. 
BCFT
on M

=

Bulk AdSd+1

End-of-the-world 
brane (EOW brane)

(2-2) AdS/BCFT



The gravity action in Euclidean signature looks like

The coordinate of Q and its induced metric are        and         . 

We define the extrinsic curvature and its trace

(      is a unit vector normal to Q.)

e.g.   Gaussian normal coordinate:
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Gibbons
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Bulk matter fields

.     , ab

ab

baab KhKnK ==

ax abh

an

ba

ab dxdxxhdds ),(22  +=
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Variation:

At the AdS boundary M,  we impose the Dirichlet boundary 

condition                  following the standard AdS/CFT argument.

On the other hand, at the new boundary Q,  we argue to require

the Neumann b.c. :

`boundary Einstein eq.’

Why Neumann b.c. (brane-world type) ? 

(1) Keep the boundary dynamical.  New data at Q should not be required. 

(2) Orientifolds in string theory lead to this condition.

In general, this AdS/BCFT description is a hard wall approximation.

. )(
16
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0=−− Q

ababab TKhK



Summary of AdS/BCFT construction

Q

NM

z

AdS boundary
: End of the world (EOW) brane

0=−− Q

ababab TKhK
∂M

Gravity on an asymptotically 
AdS space N, s.t. ∂N=M∪Q =

ab

ab

baab KhKnK ==    ,

Extrinsic curvature:

We impose Neumann b.c.:

CFT on a manifold M 

with a boundary ∂M 

  

Depend on types of EOW brane.



Holographic Dual of BCFT

To preserve the BCFT symmetry, we choose 

(T is the tension of Q). 

The Neumann b.c. looks like                                .         

Example: Dual of  BCFT on a half space 

        ab

Q

abab

Q

ab hTThT −=

  )( abab hTKK −=

Q
NM

N (AdSd+1)
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Q(AdSd)
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Differences between two “subregion/subregion duality”

ΓA
MAA

[2] AdS/BCFT

⇒ Q is totally geodesic surface       
or it generalizations.

⇒  Surface Q back-reacts ! 
Q

NM

[1] Entanglement Wedge

⇒ ΓA is extremal surface.
(no back-reactions) 

In this talk, we will see interesting interplay between them.



(2-3) HEE in AdS/BCFT

𝑺𝑨 = 𝐌𝐢𝐧 𝐄𝐱𝐭
𝐀𝐫𝐞𝐚(Γ𝑨)

𝟒𝑮𝑵Γ𝑨, 𝑩
𝜕Γ𝑨 = 𝝏𝑨 ∪ 𝝏𝑩

=
AdS/BCFT

CFTd

M

BdyA
M

Q

AdSd+1
Γ𝑨

This region B  is now known as an Island !

[TT 2011, Fujita-Tonni-TT 2011]

Extremal Surfaces 
can end on Q !

𝐈𝐬𝐥𝐚𝐧𝐝 𝐟𝐨𝐫𝐦𝐮𝐥𝐚: 𝑺𝑨 = 𝐌𝐢𝐧
𝐀𝐫𝐞𝐚(Σ)

𝟒𝑮𝑵
+ 𝑺𝑨∪Σ



HEE in AdS3/BCFT2

The holographic EE is obtained as

cf.  CFT Result
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Def 2 (Cylinder Amplitude)

Def 3 (Entanglement Entropy)

In 2d BCFT, the EE behaves like

[Calabrese-Cardy 2004]
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Boundary  Part 
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Def 1 (Disk Amplitude)

.0       , log)(  BggSbdy = Disk

α

Definitions of g-function (boundary Entropy) [Affleck-Ludwig 1991]

(2-4) Holographic g-theorem



Derivation of Holographic g-Theorem

Consider the surface Q  defined by                in the Poincare metric

We impose the null energy condition for the boundary matter

i.e.                                for any null vector       .
[cf.  Hol. C-theorem:  Freedman-Gubser-Pilch-Warner 1999,  Myers-Sinha 2010]

For the null vector, 

we find the constraint  
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Thus we simply get                   from the null energy condition.

Let us define the holographic g-function by

Then it is easy to see

because                                      .

For d=2, at fixed points                 agrees with the boundary entropy.

For any dimension d, we find that            is a monotonically 

decreasing function of the length scale z.

This is our holographic g-theorem !
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Moving mirror

Moving mirrors have been known for a while as instructive models 
which mimic the Hawking radiation from Black holes.

[see e.g.  Birrell-Davies text book]

Acceleration

Mirror

X
Radiation Observer

This provides an interesting class of non-equilibrium processes,
where quantum entanglement gets crucial. [cf. quantum quenches]    

③ Moving Mirror and EE



(3-1) BCFT Description

We focus on two dim. CFTs. Then we can apply 
conformal mapping to solve the moving mirror problem. 
We write a mirror trajectory  as x=Z(t).

Conformal Map

Standard Setup of BCFT
Boundary Conformal Field Theory
i.e. Conformal symmetry is 
partially preserved on the bdy.
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Example 1 :  Escaping Mirror  (Constant Radiation)
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(3-2) Computing Entanglement Entropy

Calculation of Entanglement Entropy (EE)

To get a universal result, we choose the subsystem A 

to be a semi-infinite line A=[x0,∞] at time t.  

We consider the EE  between A and its compliment.

A A
A twist 
operator
Insertion
at (x0,t) 

n

n
L



We can calculate the EE via the replica method.

where                   is the g-function or bdy entropy.

By applying the conformal transformation, we obtain
(we write the UV cut off or lattice spacing as ε)
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Note that this result is universal for any two dim. CFTs.
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It is instructive to choose the time-dependent subsystem:  
A=[x0(t),∞],   where x0(t)=-t+ξ0 .   In this case we find
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Example 2:  Kink Mirror (Model of a BH evaporation)
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The time evolution of EE 

reproduces  the perfect page curve !
(We chose A=[Z(t)+0.1,∞].)  
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Above results for the semi-infinite subsystem are universal in 2d CFTs. 
However, the EE for a finite interval A depends on details of 2d CFTs.
➔ Next, we will focus on holographic CFTs.
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(3-3) Holographic Moving Mirror 
We apply AdS/BCFT to get a gravity dual of moving mirror.
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Example 1:  Escaping Mirror
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The HEE can be computed as .
4

)(
,

4

)(







 

=
N

dis

A

N

con

A
A

G

L

G

L
MinS

Disconnected

dis

AQ

AdS bdyA

101 .,  εβ ==

/cSA

t

/cSA

t

]10)(,1.0)([ ++= tZtZA

Finite Interval 

Connected

con

A
Q

AdS bdyA



Example 2:  Kink Mirror
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Thank you very much !
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