XXVII Giambiagi Winter School

@Ciudad Universitaria

Holography, Black Holes and Information Theory

July 21 – 26, 2025. Buenos Aires, Argentina.

Entanglement in Holographic Theories

Tadashi Takayanagi

Yukawa Institute for Theoretical Physics

Kyoto University

Contents

- 1 Holographic Entanglement Entropy (HEE)
 - (1-1) Holographic Setup: AdS/CFT
 - (1-2) EE in CFT and Replica Method
 - (1-3) HEE for Static Backgrounds
 - (1-4) HEE for Time-dependent Backgrounds
 - (1-5) Holographic Pseudo Entropy

References on Holographic Entanglement Entropy

Reviews: * Rangamani-TT, arXiv: 1609.01287 [Lect.Notes Phys. 931 (2017)]

- * Van Raamsdonk, arXiv: 1609.00026 [TASI 2015, 297]
- * Nishioka-Ryu-TT, arXiv:0905.0932, [J.Phys.A42:504008,2009]
- Essay: * TT, arXiv: 2506.06595 [Phys.Rev.Lett. 134 (2025) 24, 240001]

AdS/BCFT [arXiv 1105.5165, 1108.5152]
 (2-1) Boundary conformal field theory (BCFT)
 (2-2) AdS/BCFT
 (2-3) HEE in AdS/BCFT

- Moving Mirror and EE [arXiv 2011.12005, 2106.11179]
 (3-1) BCFT description
 (3-2) Calculating Entanglement Entropy
 - (3-3) Holographic Moving Mirror

(2-4) Holographic g-theorem

1 Holographic Entanglement Entropy (1-1) Holographic Setup: AdS/CFT

Gravity (String theory)
on D+1 dim. AdS
(anti de-Sitter space)

Classical limit

General relativity with ∧ <0

Maldacena 1997]

Massless (gapless) theory

Conformal Field Theory (CFT) on D dim. Minkowski spacetime

Large N + Strong coupling

Strongly interacting Quantum Field Theories

Basic Principle

 $Z_{Gravity} = Z_{CFT}$

(Bulk-Boundary relation): Partition Function

A Basic Question: Which region in the AdS does encode the 'information in a certain region' of the CFT?

Consider the entanglement entropy SA which measures the amount of information!

(1-2) EE in CFT and Replica Method

Replica Method

A basic method of calculating EE in QFTs is the replica method.

$$S_{A} = -\frac{\partial}{\partial n} \operatorname{Tr}_{A} \left(\rho_{A} \right)^{n} |_{n=1} = -\frac{\partial}{\partial n} \operatorname{log} \operatorname{Tr}_{A} \left(\rho_{A} \right)^{n} |_{n=1} .$$

Compute this trace as a partition function

Below we explain the replica method for two dimensional (2d) QFTs. Our main target is the analysis for 2d CFTs.

[Holzhey-Larsen-Wilczek 94,···, Calabrese-Cardy 04]

The replica method is also an important method to (often numerically) evaluate EE in higher dimensional QFTs.

In the path-integral formalism, the ground state wave function $|\Psi\rangle$ can be expressed in the path-integral formalism as follows:

We express the reduced density matrix $\rho_A = \text{Tr}_B |\Psi\rangle\langle\Psi|$:

Finally, we obtain a path integral expression of the trace

$$\operatorname{Tr}(\rho_A)^n = [\rho_A]_{ab}[\rho_A]_{bc} \cdots [\rho_A]_{ka}$$
 as follows:

Glue each boundaries successively.

= a path integral over n - sheeted Riemann surface Σ_n n sheets In this way, we obtain the following representation

$$\operatorname{Tr}(\rho_A)^n = \frac{Z_n}{(Z_1)^n} ,$$

where Z_n is the partition function on the n-sheeted Riemann surface \sum_n .

Equally we can regard the partition function \boldsymbol{Z}_n as that of a n-replicated CFT on a plane Replicated fields

EE in 2d CFTs [Calabrese-Cardy 04]

Consider the conformal map: $z^n = \frac{w - u}{w - v}$.

$$T(w) = \left(\frac{dz}{dw}\right)^{2} \frac{T(z) + \frac{c}{12} \left\{z, w\right\} = \frac{c(1 - n^{-2})}{24} \cdot \frac{(v - u)^{2}}{(w - u)^{2}(w - v)^{2}}.$$

$$\frac{c(v - u)^{2}}{(w - u)^{2}(w - v)^{2}}.$$
derivative $(z'''z' - \frac{3}{2}z''^{2})/z'^{2}$

$$\Rightarrow h_{\text{each sheet}} = \frac{c(1-n^{-2})}{24}, \qquad h_{\text{tot}} = nh_{\text{each sheet}} = \frac{c(n-1/n)}{24}.$$

Thus for general 2d CFTs with the central charge c, we obtain

Tr
$$(\rho_A)^n \propto (u-v)^{-4h_{tot}} = (u-v)^{-\frac{c}{6}(n-1/n)}$$
.

In the end, we obtain

Renyi Entropy:
$$S_A^{(n)} = \frac{c}{6} \left(1 + \frac{1}{n} \right) \log \frac{l}{\varepsilon}$$
 $(l \equiv v - u).$

Entanglement Entropy:
$$S_A = \frac{c}{3} \log \frac{l}{\varepsilon}$$
.

[Holzhey-Larsen-Wilczek 94]

Note: the UV cut off ε is introduced.

(1-3) HEE for Static Backgrounds

[Ryu-TT 2006]

For a static asymptotically AdS background, SA can be computed from the minimal area surface Γ A:

$$S_A = \min_{\Gamma_A} \left[\frac{\operatorname{Area}(\Gamma_A)}{4G_N} \right]$$

Note: $\partial \Gamma A = \partial A$ and ΓA is homologous to A.

This formula was later proved by Lewkowycz-Maldacena 2013 based on the bulk-bdy relation of AdS/CFT.

Intuitive Understanding of This Formula

This white region is accessible for an observer in A.

⇒ This is called **entanglement wedge**.

Leading divergence and Area law

For a generic choice of γ_A , a basic property of AdS gives

Area
$$(\gamma_{\rm A}) \sim R^d \cdot \frac{{\rm Area}(\partial \gamma_{\rm A})}{\varepsilon^{d-1}} + ({\rm subleading\ terms}),$$

where R is the AdS radius.

Because $\partial \gamma_A = \partial A$, we find

$$S_A \sim \frac{\text{Area}(\partial A)}{\varepsilon^{d-1}} + \text{(subleading terms)}.$$

This agrees with the known area law relation in QFTs.

Relation to BH Entropy

We can regard the HEE as a generalization of BH entropy.

AdS BH = CFT at finite temp. \Rightarrow Mixed state: $SA \neq SB$!

General Behavior of HEE (=EE in CFTd+1) [Ryu-TT 06,···]

$$S_{A} = \frac{\pi^{d/2} R^{d}}{2G_{N}^{(d+2)} \Gamma(d/2)} \left[p_{1} \left(\frac{l}{\varepsilon} \right)^{d-1} + p_{3} \left(\frac{l}{\varepsilon} \right)^{d-3} + \cdots \right]$$

$$\cdots + \begin{cases} p_{d-1}\left(\frac{l}{\varepsilon}\right) + p_d & \text{(if } d+1 = \text{odd)} \\ p_{d-2}\left(\frac{l}{\varepsilon}\right)^2 + q\log\left(\frac{l}{\varepsilon}\right) & \text{(if } d+1 = \text{even)} \end{cases}, \text{ Area law divergence}$$

where
$$p_1 = (d-1)^{-1}$$
, $p_3 = (d-2)/[2(d-3)]$,....
$$q = (-1)^{(d-1)/2} (d-2)!!/(d-1)!!$$

characterizes odd dim. CFT.

A universal quantity (F) which Agrees with conformal anomaly (central charge) in even dim. CFT

Algebraic properties in Quantum Information

⇔ Geometric properties in Gravity

Holographic Proof of Strong Subadditivity(SSA) [Headrick-TT 07]

$$\begin{vmatrix} A \\ B \\ C \end{vmatrix} = \begin{vmatrix} A \\ B \\ C \end{vmatrix} \Rightarrow S_{AB} + S_{BC} \ge S_{ABC} + S_{B}$$

$$\begin{vmatrix} A \\ B \\ C \end{vmatrix} = \begin{vmatrix} A \\ B \\ C \end{vmatrix} \Rightarrow S_{AB} + S_{BC} \ge S_{A} + S_{C}$$

$$(Note: AB \equiv A \cup B)$$

"Triangle inequalities in Geometry = SSA"

Monogamy of Mutual Information [Hayden-Headrick-Maloney 11]

The holographic mutual information

$$I(A:B) = S_A + S_B - S_{AB}$$

has a special property called monogamy.

$$I(A:BC) \ge I(A:B) + I(A:C)$$

$$\Leftrightarrow I_3(A,B,C) \equiv S_A + S_B + S_C + S_{ABC} - S_{AB} - S_{BC} - S_{AC} \le 0$$

Comments:

- This property is special to holographic CFTs. [cf. For massive free fermion QFT: $I_{\rm 3}>0$ Casini-Fosco-Huerta 05]
- This property also leads to the *Cadney-Linden-Winter* inequality as well as *strong superadditivity* of Hol. MI.

(1-4) HEE for Time-dependent Backgrounds

[Hubeny-Rangamani-TT 07]

A generic Lorentzian asymptotic AdS spacetime is dual to a time dependent state $|\Psi(t)\rangle$ in the dual CFT.

The entanglement entropy gets time-dependent:

$$\rho_A(t) = \operatorname{Tr}_B[|\Psi(t)\rangle\langle\Psi(t)|] \longrightarrow S_A(t).$$

This is computed by the holographic formula:

$$S_A(t) = \operatorname{Min}_{\Gamma_A} \operatorname{Ext}_{\Gamma_A} \left[\frac{A(\Gamma_A)}{4G_N} \right]$$

$$\partial A = \partial \gamma_A$$
 and $A \sim \gamma_A$.

Entanglement Wedges

Which bulk region is dual to a given region A in CFT?

⇒ Entanglement Wedge MA (note: we took a time slice)

 $M_A = A$ region surrounded by A and Γ A (on time

slice)

$$\rho_{\perp}$$
 in CFT

$$\Leftrightarrow \rho_{MA}$$
 in AdS gravity

[Hamilton-Kabat-Lifschytz-Lowe 2006, Czech-Karczmarek-Nogueira-Raamsdonk 2012, Wall 2012, Headrick-Hubeny-Lawrence-Rangamani 2014, Jafferis-Lewkowycz-Maldacena-Suh 2015, Dong-Harlow-Wall 2016, . . .]

Covariant Definition of EW

EW for Disconnected Subregions

Гав

Σ AB= Minimal Surface which divides MAB into A side and B side

Entanglement Wedge Cross Section (EWCS)

We define a quantity called *EW cross section* by

$$E_{W}(\rho_{AB}) = \frac{Area(\Sigma_{AB})}{4G_{N}}$$

Gravity dual conjecture of EWCS

$$E_{W}(
ho_{AB}) = E_{P}(
ho_{AB})$$
 Note: When ho_{AB} is state, we simply have $E_{W}(
ho_{AB}) = E_{P}(
ho_{AB}) =$

Note: When ρ_{AB} is a pure

$$E_{W}(\rho_{AB}) = E_{P}(\rho_{AB}) = S_{A} = S_{B}$$
.

Entanglement of Purification

[Terhal-Horodecki-Leung-Divincenzo quant-ph/0202044]

Definition of Entanglement of Purification (EoP)

First let us explain the purification procedure:

A given density matrix for
$$H_C$$
 : $\rho_C = \sum_i \lambda_i \big| i \big>_C \big< i \big|$.

We can always describe this state as a pure state by extending the Hilbert space:

$$H_C \to H_C \otimes H_D \qquad |\Psi\rangle_{CD} = \sum_i \sqrt{\lambda_i |i\rangle_C |i\rangle_D}$$

such that
$$\rho_C = \text{Tr}_D [\Psi / \Psi]$$

Note: there are infinite many ways to do this.

Consider all purifications $|\Psi
angle_{A\widetilde{A}B\widetilde{B}}$ of ${\cal P}_{AB}$ in the extended

Hilbert space: $H_{{}_A} \otimes H_{{}_B} \to H_{{}_A} \otimes H_{{}_{\widetilde{A}}} \otimes H_{{}_{\widetilde{A}}} \otimes H_{{}_{\widetilde{B}}}$.

Then, Entanglement of Purification (EoP) is defined by

$$E_{P}(\rho_{AB}) = \underset{\text{All purifications}|\Psi\rangle \text{ of } \rho_{AB}}{\text{Min}} S_{A\widetilde{A}}(\Psi)_{A\widetilde{A}B\widetilde{B}}$$

$$\rho_{AB} = \text{Tr}_{\widetilde{A}\widetilde{B}}(\Psi)\langle\Psi|$$
Entanglement Entropy

Note: $E_p(\rho_{AB}) \ge 0$ and $E_p(\rho_{AB}) = 0 \Leftrightarrow \rho_{AB} = \rho_A \otimes \rho_B$.

Other Conjectures of EWCS

[Dutta-Faulkner 2019]

Proposal 2: Reflected Entropy

$$\left| 2 \cdot E_{W}(\rho_{AB}) = S_{R}(\rho_{AB}) \right|$$

$$S_{R}(\rho_{AB}) \equiv S_{A\widetilde{A}}(|\Psi\rangle_{A\widetilde{A}B\widetilde{B}}), \quad \text{s.t.} \quad |\Psi\rangle_{A\widetilde{A}B\widetilde{B}} = \sum_{i,j} (\sqrt{\rho_{AB}})_{ij} |i\rangle_{AB} |j\rangle_{\widetilde{A}\widetilde{B}}$$

Proposal 3: Odd Entropy
$$E_W(\rho_{AB}) = S_{odd}(\rho_{AB})$$
 [Tamaoka 2018]

$$S_{\text{odd}}(\rho_{AB}) \equiv \lim_{n_{odd} \to 1} \frac{1}{1 - n_{odd}} \log(\rho_{AB}^{T_B})^{n_{odd}} \cdot (\rho_{AB}^{T_B})_{ab,AB} \equiv (\rho_{AB})_{aB,Ab}$$

Proposal 4: Logarithmic negativity

[KudlerFlam-Ryu 2018]

$$LN(\rho_{AB}) \equiv \log \sqrt{(\rho_{AB}^{T_B})^2} \quad .$$

$$\left| \frac{3}{2} \cdot E_{W}(\rho_{AB}) = LN(\rho_{AB}) \right|$$

(1-5) Holographic Pseudo Entropy

Question: Ver 3. Holographic Entropy Formula?

Minimal areas in *Euclidean time dependent* asymptotically AdS spaces

= What kind of QI quantity (Entropy?) in CFT?

The answer is Pseudo Entropy!

[Nakata-Taki-Tamaoka-Wei-TT, 2020]

Definition of Pseudo (Renyi) Entropy

Consider two quantum states $|\psi\rangle$ and $|\varphi\rangle$, and define

the transition matrix:

$$\tau^{\psi|\varphi} = \frac{|\psi\rangle\langle\varphi|}{\langle\varphi|\psi\rangle}.$$

We decompose the Hilbert space as $H_{tot} = H_A \otimes H_R$. and introduce the reduced transition matrix:

$$\tau_A^{\psi|\varphi} = \operatorname{Tr}_B \left[\tau^{\psi|\varphi} \right]$$

Pseudo Entropy
$$S\left(\tau_A^{\psi|\varphi}\right) = -\mathrm{Tr}\left[\tau_A^{\psi|\varphi}\log\tau_A^{\psi|\varphi}\right].$$

Renyi Pseudo Entropy
$$S^{(n)}\left(\tau_A^{\psi|\varphi}\right) = \frac{1}{1-n} \operatorname{logTr}\left[\left(\tau_A^{\psi|\varphi}\right)^n\right].$$

Basic Properties of Pseudo Entropy (PE)

• In general, $au_A^{\psi|\varphi}$ is not Hermitian. Thus PE is complex valued.

- If either $|\psi\rangle$ or $|\varphi\rangle$ has no entanglement (i.e. direct product state) , then $S^{(n)}\left(\tau_A^{\psi|\varphi}\right)=0.$
- We can show $S^{(n)}\left(\tau_A^{\psi|\varphi}\right) = \left[S^{(n)}\left(\tau_A^{\varphi|\psi}\right)\right]^{\dagger}$.
- We can show $S^{(n)}\left(\tau_A^{\psi|\varphi}\right) = S^{(n)}\left(\tau_B^{\psi|\varphi}\right)$. \rightarrow "SA=SB"
- If $|\psi\rangle = |\varphi\rangle$, then $S^{(n)}\left(\tau_A^{\psi|\varphi}\right)$ = Renyi entropy.

Holographic Pseudo Entropy

$$S\left(\tau_A^{\psi|\varphi}\right) = \operatorname{Min}_{\Gamma_A}\left[\frac{A(\Gamma_A)}{4G_N}\right]$$

Basic Properties

- (i) If ρ_A is pure, $S\left(\tau_A^{\psi|\varphi}\right) = 0$.
- (ii) If ψ or φ is not entangled, $S\left(\tau_A^{\psi|\varphi}\right) = 0.$
- →This follows from AdS/BCFT [TT 2011]

(iii)
$$S\left(\tau_A^{\psi|\varphi}\right) = S\left(\tau_B^{\psi|\varphi}\right)$$
. "SA=SB"

Pseudo Entropy and Quantum Phase Transitions

Mollabashi-Shiba-Tamaoka-Wei-TT 20, 21

Basic Properties of Pseudo entropy in QFTs

[1] Area law
$$S_A \sim \frac{\operatorname{Area}(\partial A)}{\varepsilon^{d-1}} + \text{(subleading terms)},$$

[2] The difference

$$\Delta S = S\left(\tau_A^{1|2}\right) + S\left(\tau_A^{1|2}\right) - S(\rho_A^1) - S(\rho_A^2)$$

is negative if $|\psi_1\rangle$ and $|\psi_2\rangle$ are in a same phase. PE in a 2 dim. free scalar when we change its mass.

What happen if they belong to different phases? Can ΔS be positive?

Quantum Ising Chain with a transverse magnetic field

$$H = -J \sum_{i=0}^{N-1} \sigma_{i}^{z} \sigma_{i+1}^{z} - h \sum_{i=0}^{N-1} \sigma_{i}^{x},$$

Ψ1→ vacuum of H(J1) Ψ2→ vacuum of H(J2) (We always set h=1)

J<1 Paramagnetic Phase J>1 Ferromagnetic Phase

N=16, NA=8

Heuristic Interpretation

The gapless interface (edge state) also occurs in topological orders.

→ Topological pseudo entropy [Nishioka-Taki-TT 2021].

② AdS/BCFT (2-1) BCFT (Boundary Conformal Field Theory)

For special boundary conditions, a part of conformal symmetries are preserved, called the boundary conformal field theory (BCFT).

[Cardy 1984, .., McAvity-Osborn 1995, · · · ; Cond-mat application: Kondo effect]

Boundary state

(2-2) AdS/BCFT

The gravity action in Euclidean signature looks like

$$I = \frac{1}{16\pi G_N} \int_N \sqrt{-g} \left(R - 2\Lambda + L_{matter}\right) + \frac{1}{8\pi G_N} \int_Q \sqrt{-h} \left(K + L_{matter}^Q\right).$$
 Matter fields localized on Q

The coordinate of Q and its induced metric are x^a and h^{ab} .

We define the extrinsic curvature and its trace

$$K_{ab} = \nabla_a n_b$$
, $K = h^{ab} K_{ab}$. (n^a is a unit vector normal to Q.)

e.g. Gaussian normal coordinate: $ds^2 = d\rho^2 + h_{ab}(\rho, x)dx^a dx^b$

Variation:
$$\delta I = \frac{1}{16\pi G_N} \int_{Q} \sqrt{-h} (K_{ab} - Kh_{ab} - T_{ab}^{Q}) \, \delta h^{ab}.$$

At the AdS boundary M, we impose the Dirichlet boundary condition $\delta h^{ab} = 0$ following the standard AdS/CFT argument.

On the other hand, at the new boundary Q, we argue to require the Neumann b.c. :

$$\left| K_{ab} - Kh_{ab} - T_{ab}^{\mathcal{Q}} = 0 \right|$$

`boundary Einstein eq.'

Why Neumann b.c. (brane-world type)?

- (1) Keep the boundary dynamical. New data at Q should not be required.
- (2) Orientifolds in string theory lead to this condition.

 In general, this AdS/BCFT description is a hard wall approximation.

Summary of AdS/BCFT construction

CFT on a manifold M with a boundary ∂ M

Gravity on an asymptotically AdS space N, s.t. ∂ N=M U Q

: End of the world (EOW) brane

We impose Neumann b.c.:

$$K_{ab} - Kh_{ab} - T_{ab}^{Q} = 0$$

Depend on types of EOW brane.

Extrinsic curvature:

$$K_{ab} = \nabla_a n_b, \quad K = h^{ab} K_{ab}$$

Holographic Dual of BCFT

To preserve the BCFT symmetry, we choose

$$T_{ab}^{\mathcal{Q}} \propto h_{ab} \implies T_{ab}^{\mathcal{Q}} = -T \ h_{ab}$$
 (T is the tension of Q).

The Neumann b.c. looks like

$$K_{ab} = (K - T) h_{ab}$$

Example: Dual of BCFT on a half space

<u>Differences between two "subregion/subregion duality"</u>

[1] Entanglement Wedge

⇒ ΓA is extremal surface. (no back-reactions)

$$h^{ab}K_{ab}=0$$

[2] AdS/BCFT

⇒ Q is totally geodesic surface or it generalizations.

$$K_{ab} = \text{fixed}$$

⇒ Surface Q back-reacts!

In this talk, we will see interesting interplay between them.

(2-3) HEE in AdS/BCFT

[TT 2011, Fujita-Tonni-TT 2011]

$$S_A = \underset{\Gamma_A, B}{\text{Min Ext}} \left[\frac{\text{Area}(\Gamma_A)}{4G_N} \right]$$

$$\partial \Gamma_A = \partial A \cup \partial B$$

This region B is now known as an Island!

Island formula:
$$S_A = \text{Min} \left| \frac{\text{Area}(\Sigma)}{4G_N} + S_{A \cup \Sigma} \right|$$

HEE in AdS3/BCFT2

The holographic EE is obtained as

$$S_A = \frac{\text{Length}}{4G_N} = \frac{c}{6}\log\frac{2L}{\varepsilon} + \frac{c}{12}\log\frac{1+T}{1-T} .$$

cf. CFT Result

$$S_A = \frac{c}{6} \log \frac{2L}{\varepsilon} + \log g$$
.

Boundary Entropy (g-function)

Bulk Part

(2-4) Holographic g-theorem

Definitions of g-function (boundary Entropy) [Affleck-Ludwig 1991]

Def 1 (Disk Amplitude)

$$S_{bdy(\alpha)} = \log g_{\alpha}, \qquad g_{\alpha} \equiv \langle 0 | B_{\alpha} \rangle.$$

$$Z_{(\alpha,\beta)}^{cylinder} = \left\langle B_{\alpha} \left| e^{-HL} \right| B_{\beta} \right\rangle \underset{L \rightarrow \infty}{\underbrace{\approx}} g_{\alpha} g_{\beta} \underbrace{e^{-E_{0}L}}_{\text{Bulk Part}}.$$

In 2d BCFT, the EE behaves like

$$S_A = \frac{c}{6} \log \frac{2L}{\varepsilon} + \log g_{\alpha} .$$
Bulk Part
Boundary Part

Derivation of Holographic g-Theorem

Consider the surface Q defined by x = x(z) in the Poincare metric

$$ds^{2} = R^{2} \left(\frac{dz^{2} - dt^{2} + dx^{2} + (d\vec{w})^{2}}{z^{2}} \right).$$

We impose the null energy condition for the boundary matter i.e. $T_{ab}^Q N^a N^b \ge 0$ for any null vector N^a .

[cf. Hol. C-theorem: Freedman-Gubser-Pilch-Warner 1999, Myers-Sinha 2010]

For the null vector, $N^t=1$, $N^z=1/\sqrt{1+(x')^2}$, $N^x=x'/\sqrt{1+(x')^2}$, we find the constraint

$$(K_{ab} - Kh_{ab})N^a N^b = -\frac{R \cdot x''}{z(1+(x')^2)^{3/2}} \ge 0.$$

Thus we simply get $x''(z) \le 0$ from the null energy condition. Let us define the holographic g-function by

$$\log g(z) = \frac{R^{d-1}}{4G_N} \cdot \operatorname{Arcsinh}\left(\frac{x(z)}{z}\right) = \frac{R^{d-2}}{4G_N} \cdot \rho_*(z).$$

Then it is easy to see $\frac{\partial \log g(z)}{\partial z} = \frac{x'(z)z - x(z)}{\sqrt{z^2 + x(z)^2}} \le 0$,

because $(x'z-x)'=x''z \le 0$.

For d=2, at fixed points $\log g(z)$ agrees with the boundary entropy. For any dimension d, we find that $\rho_*(z)$ is a monotonically decreasing function of the length scale z.

This is our holographic g-theorem!

3 Moving Mirror and EE

Moving mirror

Moving mirrors have been known for a while as instructive models which mimic the Hawking radiation from Black holes.

[see e.g. Birrell-Davies text book]

This provides an interesting class of non-equilibrium processes, where quantum entanglement gets crucial. [cf. quantum quenches]

(3-1) BCFT Description

We focus on two dim. CFTs. Then we can apply conformal mapping to solve the moving mirror problem. We write a mirror trajectory as x=Z(t).

Boundary Conformal Field Theory i.e. Conformal symmetry is In coming vacuum partially preserved on the bdy.

Example 1: Escaping Mirror (Constant Radiation)

$$p(u) = -\beta \log(1 + e^{-u/\beta})$$

Energy flux:
$$T_{uu} = \frac{c}{24\pi} \left(\frac{3}{2} \frac{(P'')^2}{(P')^2} - \frac{p'''}{p'} \right)$$
 T=1/ β

$$= \frac{c}{48\pi\beta^2} \left(1 - \frac{1}{\left(1 + e^{u/\beta}\right)^2} \right) \approx \frac{c}{48\pi\beta^2}$$

$$z(t) \underset{t \to \infty}{\approx} -t - \beta e^{-2t/\beta}$$

$$x = Z(t)$$

$$x = -t$$

Thermal flux at temperature

(3-2) Computing Entanglement Entropy

Calculation of Entanglement Entropy (EE)

To get a universal result, we choose the subsystem A to be a semi-infinite line $A=[x0,\infty]$ at time t. We consider the EE between A and its compliment.

We can calculate the EE via the replica method.

$$\operatorname{Tr}\left[\left(\rho_{A}\right)^{n}\right] = \left\langle\sigma_{n}\right\rangle = \frac{g}{L^{\Delta_{n}}}, \quad \Delta_{n} = \frac{c}{12}(n-1/n).$$

where $g = e^{S_{bdy}}$ is the g-function or bdy entropy. [Affleck-Ludwig 1991]

By applying the conformal transformation, we obtain (we write the UV cut off or lattice spacing as ε)

$$S_{A} = -\frac{\partial}{\partial n} \operatorname{Tr}[(\rho_{A})^{n}] = \frac{c}{6} \log \left[\frac{t + x_{0} - p(t - x_{0})}{\varepsilon \sqrt{p'(t - x_{0})}} \right] + S_{bdy}$$

$$\approx \frac{c}{t \to \infty} \frac{c}{12\beta} (t - x_{0}) + \frac{c}{6} \log \frac{t}{\varepsilon} + S_{bdy} .$$

Note that this result is universal for any two dim. CFTs.

It is instructive to choose the time-dependent subsystem: $A=[x0(t),\infty]$, where $x0(t)=-t+\xi0$. In this case we find

$$S_A \approx \frac{c}{6\beta}t + \frac{c}{6}\log\frac{\xi_0}{\varepsilon} + S_{bdy}.$$

Example 2: Kink Mirror (Model of a BH evaporation)

$$p(u) = -\beta \log(1 + e^{-u/\beta}) + \beta \log(1 + e^{(u-u_0)/\beta}).$$

$$\Rightarrow Z(t) \underset{t \to -\infty}{\approx} 0, \qquad Z(t) \underset{t \to \infty}{\approx} -u_0/2.$$

The time evolution of EE

$$S_A = \frac{c}{6} \log \left[\frac{t + x_0 - p(t - x_0)}{\varepsilon \sqrt{p'(t - x_0)}} \right] + S_{bdy}.$$

reproduces the perfect page curve ! (We chose $A=[Z(t)+0.1,\infty]$.)

Above results for the semi-infinite subsystem are **universal** in 2d CFTs. However, the EE for a finite interval A depends on details of 2d CFTs.

→ Next, we will focus on holographic CFTs.

(3-3) Holographic Moving Mirror

We apply AdS/BCFT to get a gravity dual of moving mirror.

$$ds^{2} = \frac{dz^{2}}{z^{2}} - \frac{dudv}{z^{2}}$$
$$+ \frac{12\pi}{c} T_{uu}(u) du^{2}$$

$$\begin{cases} U = p(u) \\ V = v + \frac{p''(u)}{2p'(u)} z^2 \\ \eta = z\sqrt{p'(u)} \end{cases}$$

[Banados 1999, Roberts 2012]

$$ds^2 = \frac{d\eta^2 - dUdV}{\eta^2}$$

Standard AdS/BCFT setup for BCFT on a half plane

Example 1: Escaping Mirror

$$p(u) = -\beta \log(1 + e^{-u/\beta})$$

The HEE can be computed as

$$S_A = Min \left\{ \frac{L(\Gamma_A^{con})}{4G_N}, \frac{L(\Gamma_A^{dis})}{4G_N} \right\}.$$

Disconnected A AdS bdy

Example 2: Kink Mirror

Thank you very much!