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@) Holographic Entanglement Entropy
(1-1) Holographic Setup: AdS/CFT

Mald 1997
AdS/CFT 'aldacena 1971
)/lassless (gapless) theory

Gravity (String theory) |
on D+1 dim. AdS —. Conformal Field Theory (CFT)

(anti de—Sitter space) —  on D dim. Minkowski spacetime

‘ Classical limit ‘ Large N + Strong coupling

General relativity Strongly interacting
with A <0 Quantum Field Theories
L. .=/
Basic Principle g Gravily CFT

(Bulk—Boundary relation) : partition Function




a 3oty | Grajlvity |
in Anti de—Sitter space (AdS)

\> AdS metric

_— 2 —di* + 3 dx?
// dS2=R2° 22121 :

Ve > Z

Length scale in CFT
Z>€E

(UV cut off in CFT)




A Basic Question: Which region in the AdS does
encode the ‘information in a certain region’ of the CFT ?

.
@] roe - (x
v

Region Ain CFT,, Région X,in AdS,,

» Consider the entanglement entropy SA which
measures the amount of information !



(1-2) EE in CFT and Replica Method

Replica Method
A basic method of calculating EE in QF Ts is the replica method.

O O

S,y = _a—TrA (pA )n o =—— log Tr, (pA )n [t
n on 4

Compute this trace
as a partition function

Below we explain the replica method for two dimensional (2d)
QF Ts. Our main target is the analysis for 2d CFTs.

[ Holzhey—Larsen—Wilczek 94,---, Calabrese—Cardy 04]

The replica method is also an important method to

(often numerically) evaluate EE in higher dimensional QFTs.



In the path-integral formalism, the ground state wave
function |‘P> can be expressed in the path-integral

formalism as follows:

t =00
T
|
£
A | I
' L I
%)= | hmanaanas ()= .
I I
+ Euclidean Path integral i |
|
t:—OO ) E_________:
» X




We express the reduced density matrix p, = Tr,|¥)(¥| :

» X



Finally, we obtain a path integral expression of the trace
Tr(p,) =[plulpals 10,1, as follows:

Glue each boundaries successively.

Tr(p,)' = BT

= a path integral over

n -sheeted Riemann surface X

n sheets {



In this way, we obtain the following representation

Te(p, ) =2
(Z))
where Z is the partition function on the n-sheeted
Riemann surface 2

Equally we can regard the partition function Z as that of

a n-replicated CFT on a plane
Replicated fields

9 onk wmmp @.0,,-¢, onC




EE in 2d CFTs [Calabrese-Cardy 04]

w—u

Consider the conformal map: z" =

M =

2 c(l-n~? (v—u)’
T(w)= T(z)+ —{z W) = .
dw 12 24 (w u) (w— v)
=0 Schwarzian
derivative (2" — 3:"%)/2"*
c(l1-n~" c(n—1/n)
— h cach sheet ( 24 > h tot nh cach sheet 24 .



Thus for general 2d CFTs with the central charge ¢, we obtain

C
Tr (pa)"  (u — v) "ot = (y — ) "6 H™),

In the end, we obtain

Renyi Entropy: S;") = i(l + l) log i (l=v—u).
6 n E
e | C [
ntanglement Entropy: S, = —log — .
3 g

[Holzhey-Larsen-Wilczek 94]

Note: the UV cut off € is introduced.



(1-3) HEE for Static Backgrounds

[Ryu-TT 2006]

For a static asymptotically AdS background, SA can be
computed from the minimal area surface [ A:

S ~ |Area(Iy)
= min
4 FA 4GN

Note: d [ A=90 A and [ A is homologous to A.

This formula was later proved by

Lewkowycz—Maldacena 2013 based
on the bulk-bdy relation of AdS/CFT.  CFT
bou

T

B

CFTd+1

n -—
M

Entanglement
Wedge

I'a

AdSd-+2

Gravity
(AdS)



Intuitive Understanding of This Formula

A Observer

% Observer who cannot access B
will find a “black hole” at I'p .

= This BH entropy is the HEE !

B This white region is accessible for
an observer in A.
= This is called entanglement wedge.



Leading divergence and Area law

For a generic choice of 7, a basic property of AdS gives

Area(0y )

Area(y,)~ R" - RN (subleading terms),
where R is the AdS radius.
Becausedy, =0A , we find
S, ~ ATZ?{(_?A) + (subleading terms).

This agrees with the known area law relation in QFTs.



Relation to BH Entropy

We can regard the HEE as a generalization of BH
entropy.

)

, A—BH horizo

AdS BH = CFT at finite temp. =Mixed state: SAZSB !



General Behavior of HEE (=EE in CFTd+1) [Ryu-TT 06,-]

§ - 7Z'd/2Rd [inl—l_ (i]di%—l—
4 2GYIT(d ] 2) Pl g P

Area law

divergence

A universal quantity (F) which Agrees with conformal anomaly
characterizes odd dim. CFT. (central charge) in even dim. CFT



Algebraic properties in Quantum Information
< Geometric properties in Gravity

Holographic Proof of Strong Subadditivity(SSA)

[Headrick—-TT 07]

A A A

B = B ZBD ) = S5 +5;028 50+,
C C C

A A A>

B = B > B = S5 +95c 28,5,

(Note: AB =AU B)

“Triangle inequalities in Geometry = SSA”



Monogamy of Mutual Information [Hayden-Headrick-Maloney 11]

The holographic mutual information A A
I(A:B)=S8,+S5,-S; B > B

has a special property called monogamy. C‘ C

[(A:BC)Y=2I(A:B)+1(A:C)
S L(A,B,C)=S,+S,+S-+S8 50 =S85 =S5 —5, <0

Comments:
* This property is special to holographic CFTs.
[cf. For massive free fermion QFT: 1, > 0 casini-Fosco-Huerta 05]

* This property also leads to the Cadney-Linden-Winter
inequality as well as strong superadditivity of Hol. MI.



(1-4) HEE for Time-dependent Backgrounds
[Hubeny—Rangamani—-TT 07]

A generic Lorentzian asymptotic AdS spacetime is dual to

)
a time dependent state |V (t)) in the dual CFT. k=
|_
The entanglement entropy gets time—dependent: _§
N
+J
-
pa(t) = Trg[|P(@NWY()|] mp S, (t). 0
This is computed by the holographic formula: E _|O
S
A(T,) -
S,(t) = Minr , Ext o
@

0A=0y, and A~y, .




Entanglement Wedges

Which bulk region is dual to a given region A in CFT ?
= Entanglement Wedge MA (note: we took a time slice)

MA = A region surrounded by A and | A (on time

slice) :
p, mCFT
< p,,, 1n AdSgravity

A

Minimal
Surface

[Hamilton—Kabat-Lifschytz—Lowe 2006, Czech—
Karczmarek—Nogueira—Raamsdonk 2012, Wall 2012,
Headrick—Hubeny—Lawrence—Rangamani 2014,

Jafferis—Lewkowycz—Maldacena—Suh 2015, Dong—
Harlow—Wall 2016, . . . ]




Covariant Definition of EW

Entanglement Wedge

=Domain of dependence
of MA




EW for Disconnected Subregions

[(4:B)=S,+S,-S,, =0

MAB=MAUMB, I'AB= TAUI'B [(4:B)>0

2 AB= Minimal Surface which divides MAB
into A side and B side




Entanglement Wedge Cross Section (EWCS)

We define a quantity called EW cross section by
MAB

2 AB

Gravity dual conjecture of EWCS

_ Note: When L p is apure
EW (IOAB) o EP (IOAB) state, we simply have

o Ew(Pap) =Ep(Pap) =S,=S;.
Entanglement of Purification
[Terhal-Horodecki—Leung—Divincenzo quant—ph/0202044]



Definition of Entanglement of Purification (EoP)

First let us explain the purification procedure:
i) i

We can always describe this state as a pure state by
extending the Hilbert space:
Z>C‘Z>D

He>H.®H, |¥),=24

such that p, = TrDﬂ‘P><\PH

A given density matrix for H . : Pc = Z;ti
j

Note: there are infinite many ways to do this.



Consider all purifications‘\P>AZBE of O 45 in the extended

Hilbert space: H , @ H _)HA®HB®H;1 ®H- .

Then, Entanglement of Purification (EoP) is defined by

Ep(p)= Min SAZ(I\P>AZB§)

All purifications |W )of pag ‘

Pip = TrZEHLPXLPH Entanglement Entropy

Note: E (p,5)20 and E (pp) =0 pp=p,9pp.



Other Conjectures of EWCS

[Dutta-Faulkner 2019]

Proposal 2: Reflected Entropy (2-E, (p,s) =S; (P4z)

Sr (0,45) = SAZ(ILP>AA73§ )9 S.t. ‘LP>AZB§ - Z(\/TAB)U i>AB‘j>Z§

I,]

Proposal 3: Odd Entropy Ey (0ap) =S, 4q(045)]| [Tamacka 2018]

Partial transposition for B

. | /odd Ty _
Soad (045) = nhm1 1— log(/?ﬁ%)r : (IOAB )ab,AB = (IOAB )aB,Ab
odd 1 | — odd
Proposal 4: Logarithmic negativity [KudlerFlam-Ryu 2018]
Ty V 3 _
LN(p ;) =log (pABB) . E'EW(/OAB) =LN(p,p)




(1-5) Holographic Pseudo Entropy

Question: Ver 3. Holographic Entropy Formula ?

Minimal areas in Euclidean time dependent
asymptotically AdS spaces

= What kind of Ql quantity (Entropy ?) in CFT ?

- The answer is Pseudo Entropy !
[Nakata—Taki—Tamaoka—Wei—-TT, 2020]




Definition of Pseudo (Renyi) Entropy

Consider two quantum states|1)) and |@) , and define
the transition matrix: Vo YN

(el
We decompose the Hilbert space as H =H QH,

and introduce the reduced transition matrix:

T;l,blcp = Try [TWPI

Pseudo Entropy S(T |<,0) = [ |<plog

Renyi Pseudo Entropy s (TZ) |<p) —




Basic Properties of Pseudo Entropy (PE)
¢|¢

* Ingeneral, T is not Hermitian. Thus PE is complex valued.

e If either|1/)) or|¢) has no entanglement (i.e. direct product state),
then
s (1719) = o,

« We can show S(n)( 1/J|<P) [S(n)( <P|1/J)]

e We can show S(n)( 1/JI<P) _ ¢ (Tg)l(p). S 4GpA-Sp”

« If |Y)=|¢p), then S(")( lpl(p) = Renyi entropy.



Holographic Pseudo Entropy

A(T)

S (T;’bl(p) = Minr,

4Gy

Basic Properties
(i) If py is pure, S (T}lplq)) =0.

(ii) If Y or @ is not entangled,

S (TZ)W) =0.
—>This follows from AdS/BCFT [TT 2011]
(iii) S (T;{’"”) —5 (r},!"‘P) . “SA=SB”

Boundary (CFTd)

———=—» Euclidean Time



Pseudo Entropy and Quantum Phase Transitions
[Mollabashi—Shiba—Tamaoka-Wei-TT 20, 21]

Basic Properties of Pseudo entropy in QFTs

_ Area(0A)

d—1
&

[1] Arealaw |g + (subleading terms),

[2] The difference Nzﬂﬁﬂﬁﬂi'
as = s(t%) + 5(1,%) - s(p}) — S(p3%)

is negative if |Y1) and |P,)are in a same phase. pg i1 2 2 gim free scalar

when we change its mass.

S(p1)+S(p2)

-0.00015} /
-0.00020

N N N N
n 11 11 "
e S S

-0.00025

s(7112)-

-0.00030
-2.x1077 -1.x10"7 0 1.x10"7 2.x1077

What happen if they belong to different phases ?
Can A S be positive ?



Quantum Ising Chain with a transverse magnetic field

N-1

——JZO' Tiiq— ZOW

=0

Z
z?

J<1 Paramagnetic Phase
J>1 Ferromagnetic Phase

VY 1— vacuum of H(J1)
Y 2— vacuum of H(J2)
(We always set h=1)

N=16, NA=8
Ji1=1 J1=2
- S(r'?) - S(r1?)
S(p1) +S(p2) i S(p1) + S(p2)
2 ‘ 2
0 322.0 2.5 0 sz.o

ot 85 = 5(22) 5 (e37) - s(o3) - (o} >
when W1 and ¥ 2 are in different phases !



Heuristic Interpretation

Two gapped phases are
Wil separated by a gapless phase.

CFT!
i PE is enhanced! AS > 0

AdS Dual of
Gapless Interface

The gapless interface (edge state) also occurs in topological orders.
=> Topological pseudo entropy [Nishioka-Taki—TT 2021].



@ AdS/BCFT
(2-1) BCFT (Boundary Conformal Field Theory)

For special boundary conditions, a part of conformal symmetries
are preserved, called the boundary conformal field theory (BCFT).

[Cardy 1984, .., McAvity—Osborn 1995, :-- ;: Cond—mat application: Kondo effect]

d dim CFT : SO(2.d) § jJJ
g e
U 4+ CFT L g
d dim. BCFT: SO(2,d-1) © FLL@
ha] Energy flux

f f Boundary
(L,—L,)|B)=0
Boundary state

CFT

n

T, o |T(2)~T(2)],, =0



(2-2) AdS/BCFT

End—of-the—world
AdS/CFT AdS/BCFT brane (EOW brane)

d dim. d+1 dim. d dim. d+1 dim.

CFT Gravity BCFT Gravity
on Rd on AdS on M with EOW




The gravity action in Euclidean signature looks like

Gibbons
-Hawking term

J—&(R-2A+L ) + N—h(K + Lma .
167ZG j ! j I\/Iatterticlelds
Bulk matter flelds

localized on Q

The coordinate of Q and its induced metric are X° and h :

We define the extrinsic curvature and its trace
. __7.ab a., .
K,=V n, K=h""K_, . (" isaunitvector normal to Q.

e.g. Gaussian normal coordinate: ds* =dp” + h , (p,x)dx"dx"

1
» Kab = Eaphab (p,X).



Variation: ST =

jF(K —Kh, —T2)h.
167G,

At the AdS boundary M, we impose the Dirichlet boundary
condition s’ = ( following the standard AdS/CFT argument.

On the other hand, at the new boundary Q, we argue to require
the Neumann b.c. :

— —TY = ‘boundary Einstein eq’
Kab Khab Tab =( oundary Einstein eq

Why Neumann b.c. (brane-world type) ?
(1) Keep the boundary dynamical. New data at Q should not be required.
(2) Orientifolds in string theory lead to this condition.

In general, this AdS/BCFT description is a hard wall approximation.



Summary of AdS/BCFT construction

CFT on a manifold M __ | Gravity on an asymptotically
with a boundary 9M |~ |AdS space N, st. aN=-MUQ

,,,,, Q : End of the world (EOW) brane
AdS bounda’ry ‘: ‘

We impose Neumann b.c.:

K,—Kh,-TS =0
|V| / b b f b

Depend on types of EOW brane.

-
-
-
-
-
-
-

Extrinsic curvature:

Kab — Vanb’ K — habKab



Holographic Dual of BCFT | -~ Q
|
|
To preserve the BCFT symmetry, we choose :
|
Ta% o hab = Ta% =T hab (T is the tension of Q).

The Neumann b.c. looks like

Kab :(K_T)hab.

Example: Dual of BCFT on a half space

, —dt’+dz’ +dx’ +dw’




Differences between two “subregion/subregion duality”

) | [1] Entanglement Wedge

= A is extremal surface.
(no back-reactions)

A WK =0

LT [2] AdS/BCFT

= Q is totally geodesic surface
or it generalizations.

Q K , =fixed

! = Surface Q back-reacts !

-
-
-
-
-
-
-

“In this talk, we will see interesting interplay between them.



(2-3) HEE in AdS/BCFT

[TT 2011, Fujita-Tonni-TT 2011]

SA = Min Ext

[y, B
e

AdSd+1

Area(ly)
4Gy

AdS/BCFT

emal Surfaces
cNj endon Q!

4

or, = A U OB

CFTd @ 3dy
M

This region B is now known as an Island !

Island formula: S, =M

_ [Area(Z)
in

S
4Gy + AUZ]



HEE in AdS3/BCFT2

The holographic EE is obtained as
Length ¢ 2L C 1+T

S, = = Zlog=— + —Io .
AT 46y 6 8 T2 T
cf. CFT Result
5, =Sl0gt 4+
4 = ¢log— ogg -

—— Boundary Entropy (g—function)
Bulk Part




(2-4) Holographic g-theorem
Definitions of g-function (boundary Entropy) (affleck-Ludwig 1991]

Def 1 (Disk Amplitude) a

dey(a) =logg, , 8a = <O‘Ba >

Def 2 (Cylinder Amplitude) L
ch;linder _ Ba e—HL B ~ gag e_EOL. a <€ >
(. 3) < ‘ ‘ ﬁ>L% B 8
Boundary Part Bulk Part ime

Def 3 (Entanglement Entropy) T

In 2d BCFT, the EE behaves like CFT
c 2L B _A | Bdy

Sa =—log?+logga p (a)

N J H_J
Y Boundary Part [Calabrese-Cardy 2004]
Bulk Part




Derivation of Holographic g-Theorem

Consider the surface Q defined by x = x(z) in the Poincare metric

2
Z

2 g2 2 — 2
dSZ:Rz[dz dt® + dx* + (dw) j

We impose the null energy condition for the boundary matter
i.e. TYN°N’>0 forany null vector N°.
[cf. Hol. C-theorem: Freedman-Gubser-Pilch-Warner 1999, Myers-Sinha 2010]
For the null vector, N/ =1, N° :1/\/1+(x')2 . N* :x'/\/1+(x')2 ,
we find the constraint

- R')C" .
Z(l-l— (x1)2)3/2 —

(K,—Kh,)N°N" =



Thus we simply get x''(z) <0 from the null energy condition.
Let us define the holographic g-function by

R . x(z)j R
lo z)= - Arcsinh = - 0:(2).
gg(z) 1G. ( . 1G. P:(2)

Then it is easy to see Ologg(z) _ x'(2)z—x(2) <0
0z \/22 +x(z)

because (x'z—x)'=x"z<0 .

9

For d=2, at fixed points log g(z) agrees with the boundary entropy.
For any dimension d, we find that 2-(2z) is a monotonically
decreasing function of the length scale z.

# This is our holographic g-theorem !



3 Moving Mirror and EE

Moving mirror

Moving mirrors have been known for a while as instructive models
which mimic the Hawking radiation from Black holes.

[see e.g. Birrell-Davies text book]

Mirror
AN ©

Accelerati

Observer

Radiation

This provides an interesting class of non-equilibrium processes,
where quantum entanglement gets crucial. [cf. quantum quenches]



(3-1) BCFT Description

We focus on two dim. CFTs. Then we can apply
conformal mapping to solve the moving mirror problem.
We write a mirror trajectory as x=Z(t).

Moving Mirror Static Mirror

t t
x=Z (t) x=0-

«

X

rN ~~/

Conformal Map u=1t-—-x
X

9
[~ S =7
i = plu) b =7
(= f—x y Standard Setup of BCFT
V =V Boundary Conformal Field Theory
\ i.e. Conformal symmetry is

In coming vacuum partially preserved on the bdy.

n~~/

kv=t+x




Example 1 : Escaping Mirror (Constant Radiation)

p(u)=—pLlog(l+e™'") Thermal flux

at temperature

11\ 2 "y _
Energy flux: 7 ¢ LE(P) L ] T=1/B

./

““24x\2 (P p

Inside
horizon
X region

.0 A o~ P~
L 3 —
., T=—X
*s.
]



(3-2) Computing Entanglement Entropy

Calculation of Entanglement Entropy (EE)

To get a universal result, we choose the subsystem A
to be a semi-infinite line A=[x0,o<] at time t.

We consider the EE between A and its compliment.

A twist
operator
Insertion
at (x0,t)

x=7 (t)




We can calculate the EE via the replica method.

Tr[(p,)"]
TI‘[(pA )n]: <6n> - i, A, = é(n —1/n). ! }n-sheets

>

S
where g =¢ *» is the g-function or bdy entropy.
[Affleck-Ludwig 1991]

By applying the conformal transformation, we obtain
(we write the UV cut off or lattice spacing as €)

%) C t+x,— p(t—x )
S, =-Trl(p,)"]= S log LU=
on 6 8\/p'(t—x0)

+ dey

t—)ooﬁ(t XO)_I_ 610g +dey

Note that this result is universal for any two dim. CFTs.



It is instructive to choose the time-dependent subsystem:
A=[x0(t),>], where xO(t)=-t+£0 . In this case we find

L
-
-- -----------

7/ Entangled pair
productions: v+p(u)=0



Example 2: Kink Mirror (Model of a BH evaporation)

[——00 {—>00

p(u)=—LBlog(l+e ")+ Blog(l+e“ ™",
= Z(t) = 0, Z(t) = —u,/2.

t, A

~ Lat/ t=t2 '

uu

Thermal flux

[

C

L, = ;
4873

j

V.

rlf\u

// “. \ Entangled pair =

> productions: o
v+p(u)=0

B B

Negative energy

'/ (Saturates QNEC)



The time evolution of EE

SA=£1Og t+x0—'p(t—x0)
6 I g\/p(t—xo)

reproduces the perfect page curve !
(We chose A=[Z(t)+0.1,°°].)

+dey.

e Se——— &
p=1 =01, u,=5

Above results for the semi-infinite subsystem are universal in 2d CFTs.
However, the EE for a finite interval A depends on details of 2d CFTs.
-> Next, we will focus on holographic CFTs.



(3-3) Holographic Moving Mirror
We apply AdS/BCFT to get a gravity dual of moving mirror.

Bdy surface Q—
— p'(u) 2
5 > <V_V+2p'(u)z
E 1 =2yp'(u)
E- Q : Surface
=X m—)
> Coordinate
Js? — dz” dudv | transformation - d772 _JUdV
z’ z’ [Banados 1999, ds” = .
12 Roberts 2012] n
T = L, (M)dM2 Standard AdS/BCFT setup
C

for BCFT on a half plane



Example 1: Escaping Mirror

p(w)=—Plog(l+e ")

The HEE can be computed as

S, = Mins-

L(Ty") LT")

\

4G, 4G,

J

Disconnected A Aq4s bdy

A

[Z(5+O.1,Z(t)+10]

Holographic CFT

Q

) Connected
A AdS bdy

™ J~con
1_‘A

« rjis

Free Dirac Fermion

S ,/c

[
sl
a8l
4[
— . . z
0 2 4 o




Example 2: Kink Mirror

A p(u)=—Llog(l+e ")+ Blog(l+e" ')

adiation

. A=[Z(t)+0.1,00
e o interval S./c [u() |
ntangled pair S ]
productions: g = -1 4
v+p(u)=0 245
U
t=-—"2
2
S ./ e £
_ p=1 =01 u,=5
a5k g A
A=Finite Interval 3_35_ ."H'*, ;‘, m“ / Connected Fcon
A=[Z()+0.1,Z(t) +10]|= ""., . A .
il | i\ /Dlsconnected FA’S
1\ -




Thank you very much |
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