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Part I: Entanglement in finite systems
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Warm up: states and observables

A quantum system is associated with a Hilbert space of states H and a

set of observables represented by self-adjoint operators {a}.

Observables

encode questions we can ask about the system, and states provide prob-

abilistic answers to them through expectation values ⟨ψ|a|ψ⟩ or tr(ρa).

A general quantum state is represented by a unit-trace, positive semi-

definite operator ρ acting on H, aka density matrix.
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Warm up: states and observables

• If

ρ = |ψ⟩ ⟨ψ|

for certain |ψ⟩ ∈ H, we can alternatively describe the state by |ψ⟩
and we say it is a pure state

⇔ ρ is a rank-1 projector (it points

in a single direction in H)

• If

ρ =
∑
a

pa |ψa⟩ ⟨ψa| , (a = 1, 2, . . . )

we say it is a mixed state ⇔ statistical mixture of multiple pure

states ⇔ rank ρ > 1.
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Warm up: separability and entanglement

Consider a finite quantum system made of two independent subsystems

A and B (e.g., a pair of electrons), so that the Hilbert space factorizes

as H = HA ⊗HB .

We call this a bipartition of H. If the system is in

a pure state |ψ⟩ ∈ H, we say that:

• |ψ⟩ is a separable state if we can write it as |ψ⟩ = |ϕ⟩A ⊗ |ϕ̃⟩B .
• Otherwise, we say that |ψ⟩ is an entangled state.

Entanglement ⇐⇒ non-separability of quantum systems

6



Warm up: separability and entanglement

Consider a finite quantum system made of two independent subsystems

A and B (e.g., a pair of electrons), so that the Hilbert space factorizes

as H = HA ⊗HB . We call this a bipartition of H.

If the system is in

a pure state |ψ⟩ ∈ H, we say that:

• |ψ⟩ is a separable state if we can write it as |ψ⟩ = |ϕ⟩A ⊗ |ϕ̃⟩B .
• Otherwise, we say that |ψ⟩ is an entangled state.

Entanglement ⇐⇒ non-separability of quantum systems

6



Warm up: separability and entanglement

Consider a finite quantum system made of two independent subsystems

A and B (e.g., a pair of electrons), so that the Hilbert space factorizes

as H = HA ⊗HB . We call this a bipartition of H. If the system is in

a pure state |ψ⟩ ∈ H, we say that:

• |ψ⟩ is a separable state if we can write it as |ψ⟩ = |ϕ⟩A ⊗ |ϕ̃⟩B .
• Otherwise, we say that |ψ⟩ is an entangled state.

Entanglement ⇐⇒ non-separability of quantum systems

6



Warm up: separability and entanglement

Consider a finite quantum system made of two independent subsystems

A and B (e.g., a pair of electrons), so that the Hilbert space factorizes

as H = HA ⊗HB . We call this a bipartition of H. If the system is in

a pure state |ψ⟩ ∈ H, we say that:

• |ψ⟩ is a separable state if we can write it as |ψ⟩ = |ϕ⟩A ⊗ |ϕ̃⟩B .

• Otherwise, we say that |ψ⟩ is an entangled state.

Entanglement ⇐⇒ non-separability of quantum systems

6



Warm up: separability and entanglement

Consider a finite quantum system made of two independent subsystems

A and B (e.g., a pair of electrons), so that the Hilbert space factorizes

as H = HA ⊗HB . We call this a bipartition of H. If the system is in

a pure state |ψ⟩ ∈ H, we say that:

• |ψ⟩ is a separable state if we can write it as |ψ⟩ = |ϕ⟩A ⊗ |ϕ̃⟩B .
• Otherwise, we say that |ψ⟩ is an entangled state.

Entanglement ⇐⇒ non-separability of quantum systems

6



Warm up: separability and entanglement

Consider a finite quantum system made of two independent subsystems

A and B (e.g., a pair of electrons), so that the Hilbert space factorizes

as H = HA ⊗HB . We call this a bipartition of H. If the system is in

a pure state |ψ⟩ ∈ H, we say that:

• |ψ⟩ is a separable state if we can write it as |ψ⟩ = |ϕ⟩A ⊗ |ϕ̃⟩B .
• Otherwise, we say that |ψ⟩ is an entangled state.

Entanglement ⇐⇒ non-separability of quantum systems

6



Warm up: separability and entanglement

Imagine we only have access to subsystem A. How should we describe

the state of our electron?

It must be such that all measurements of

observables on A match hypothetical measurements over the full state

⇒ reduced-density matrix:

ρA ≡ trB ρAB

If the global state ρAB is pure then:

• If ρAB is separable ⇒ ρA is pure.

• If ρAB is entangled ⇒ ρA is mixed.

When the global state is entangled, we necessarily lose information when

we ignore one of the subsystems. The subsystems should be understood

as forming a single inseparable entity...
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Summary: separability and entanglement

• Given a quantum system made of two subsystems A,B, a

pure global state |ψ⟩ is separable if we can write it as a

tensor product, |ψ⟩ = |ϕ⟩A ⊗ |ϕ̃⟩B . If not, it is entangled.
• If |ψ⟩ is separable, the reduced density matrices on A and B

are pure. If |ψ⟩ is entangled, the reduced density matrices

are mixed. In entangled states we necessarily lose information

whenever we take a partial trace over one of the subsystems.
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Entanglement is real...
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A closer look?

⋆ Read about Bell inequalities, their relation to entanglement

and the role of possible loopholes in the experimental tests

(detection, locality, freedom of choice, etc.).
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The algebraic approach

In order to discuss entanglement in the QFT context, it is convenient to

consider operators as our primary objects.

An algebra of operators A is a set closed under linear combinations,

operator products, and taking adjoints, which also includes scalar multi-

ples of the identity,

1 ∈ A, a, b ∈ A, α, β ∈ C ⇒ αa+βb ∈ A , ab ∈ A , a† ∈ A

Given some set of operators A, we define its commutant A′ as the set

of operators which commutes with all the operators of A,

A′ ≡ {b | [b, a] = 0,∀a ∈ A}

11
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The algebraic approach

Von Neumann theorem:

• Whatever A is, A′ is an algebra.

• A is an algebra iff it coincides with its double commutant,

A = A′′.

The smallest algebra which contains any set A is A′′.
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The algebraic approach

From this perspective, states are objects that take operators as input and

return numbers (expectation values):

a state ω is a functional ω : A → C
such that

ω(αa+ βb) = αω(a) + βω(b) , ω(aa†) ≥ 0 , ω(1) = 1 ,

namely, it is linear, it produces a positive semi-definite result for operators

with a positive spectrum and it is normalized.

For any state ω acting on A, ∃! element of the algebra ρω,A ∈ A such

that

ω(a) = tr(ρω,Aa) ∀a ∈ A

Hence, a state acting on an algebra selects an operator in the algebra

itself, the reduced density matrix.
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The algebraic approach

What about subsystems?

If the system can be split into two independent

subsystems A,B, the full algebra is a tensor product A = AA ⊗AB and

AB = A′
A ,

namely, the algebra of subsystem B coincides with the algebra of the

commutant of the algebra of subsystem A (and viceversa).

Given a global pure state ω, separability means that we can write

ω = ωA ⊗ ω̃B

where ωA is a state on AA and ω̃B is a state on AB . Otherwise, ω is

entangled.
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Summary: the algebraic approach

• Quantum observables organize themselves in algebras. A set

of operators A is an algebra iff it coincides with its double

commutant, A = A′′.

• States take operators from the algebras and produce numbers

out of them (expectation values).

• Any state ω acting on an algebra A selects a unique element

of the algebra (the density matrix ρω,A ∈ A) such that the

expectation value of any operator a of the algebra can be

computed in the usual way, namely, as tr(ρω,Aa).
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A closer look?

⋆ Read about the classification of von Neumann algebras and

the contexts in which the different types appear in physics.

[More in Witten’s lectures]
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Von Neumann entropy

Once we have the density matrix representation of some global state in

some algebra, we can extract numbers out of it.

A standard measure of

entropy for any density matrix ρ is the von Neumann entropy:

S(ρ) ≡ − tr(ρ log ρ)

This entropy is always non-negative, S(ρ) ≥ 0, and vanishes if and only

if ρ is a pure state.

Given a pure state ω and some algebra A, the entropy of ρω,A coincides

with the entropy of ρω,A′ , namely, with the entropy of the density matrix

associated to the commutant algebra,

S(ρω,A) = S(ρω,A′)

17
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Entanglement Entropy

When the system splits into two subsystems, A = AA ⊗ AB , the von

Neumann entropy of the reduced density matrix associated to any of

them, ρA ≡ ρω,AA
, is called the entanglement entropy:

SEE(A) ≡ S(ρA) = − tr(ρA log ρA)

Since AB ≡ A′
A, it follows that SEE(A) = SEE(B).

The entanglement entropy is a measure of the degree of entanglement

between A and B. If the global state is pure and separable, then ρA is

pure and SEE(A) = 0.
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between A and B. If the global state is pure and separable, then ρA is

pure and SEE(A) = 0.
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Summary: entanglement entropy

• Given a density matrix induced by a global state in some

algebra, we can compute its von Neumann entropy as S(ρ) =

− tr(ρ log ρ). The entropy is positive whenever ρ is mixed

and it vanishes whenever it is pure.

• When the system splits into two subsystems A,B, the algebra

of B coincides with the commutant of the algebra of A.

• The entanglement entropy of A with respect to B, SEE(A),

is defined as the von Neumann entropy associated to the

reduced density matrix on A, and it equals SEE(B). When the

global state is entangled, SEE > 0 and there is entanglement

between the two subsystems.
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A closer look?

⋆ Read about the Schmidt decomposition and how it makes

manifest that SEE(A) = SEE(B).

⋆ Consider the following global two-qubit states |ψi ⟩ ∈ HA ⊗
HB and show that the EE reads in each case:

|ψ1⟩ =
1√
2
(|01⟩+ |00⟩) ⇒ SEE(A) = 0

|ψ2⟩ =
1√
2
(|01⟩+ |10⟩) ⇒ SEE(A) = log 2 ≃ 0.6931,

|ψ3⟩ =
1√
3
(|00⟩+ |01⟩+ |11⟩)

⇒ SEE(A) = log

[
6

3 +
√
5

]
≃ 0.1362,
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Modular Hamiltonian and modular flow

For a thermal state in the canonical ensemble the density matrix on the

full algebra of observables reads

ρ =
e−βH

Z
, Z ≡ tr e−βH

where H is the Hamiltonian of the theory and β the inverse temperature.

Then, the von Neumann entropy of ρ reads

S(ρ) = β(E − F ) , E ≡ ⟨H⟩ρ , F = −T logZ

so it coincides with the usual thermodynamic entropy.
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Modular Hamiltonian and modular flow

Consider now a general density matrix. Since it is a positive operator,

we can always write it as

ρ =
e−K

tr e−K

where K is the modular Hamiltonian.

The von Neumann entropy can be thought of as the canonical entropy

for an equilibrium state at temperature 1 for the “Hamiltonian” K . And

since we have a Hamiltonian, we can define a notion of “time evolution”,

U(τ) = ρiτ ∼ e−iτK .

The evolution of operators under this is called modular flow, O(τ) ≡
U(τ)OU(−τ), which leaves expectation values invariant, tr(ρO(τ)) =

tr(ρO).
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Summary: modular Hamiltonian

• Any density matrix comes with an associated modular Hamil-

tonian, ρ ≡ e−K/ tr e−K . The von Neumann entropy of ρ

can be thought of as the canonical entropy for an equilibrium

state at temperature 1 for such “Hamiltonian”.

• The time evolution associated to the modular Hamiltonian

defines its associated modular flow, U(τ) ∼ e−iτK . Expec-

tation values are invariant under it.
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A closer look?

• It is always possible to purify a given mixed state ρA by

enlarging the original Hilbert space HA with a copy HB . In

the tensor product, we can define a pure state |Ω⟩ so that

ρA = trB |Ω⟩ ⟨Ω|.

• Provided all the eigenvalues of ρA are non-vanishing, the

purification defines: the modular operator ∆ = ρA ⊗ ρ−1
B ,

and the modular conjugation J, which maps the algebra AA

into its commutant AB .

• The modular flow intrinsic to the original algebra ρiτA can be

extended to the purification by U(τ) = ∆iτ , which satisfies

U(τ)AAU(−τ) = AA, U(τ)ABU(−τ) = AB .
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Relative Entropy

Given two states ω1, ω2 and a single algebra A, their relative entropy

reads (where ρi ≡ ρωi ,A):

Srel(ρ1|ρ2) ≡ tr(ρ1 log ρ1 − ρ1 log ρ2) ,

• Asymmetry:

Srel(ρ1|ρ2) ̸= Srel(ρ2|ρ1)
• Positive semi-definiteness:

Srel(ρ1|ρ2) ≥ 0 and Srel(ρ1|ρ2) = 0 iff ρ1 = ρ2

• Monotonicity under algebra inclusions:

Srel(ρω1,A|ρω2,A) ≤ Srel(ρω1,B|ρω2,B) if A ⊆ B

The relative entropy is a measure of distinguishability between some

reference state and another. The greater the algebra in which we are

comparing the states, the more we can distinguish them.
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Mutual Information

Given a state ω and two subsystems A,B with algebra A = AA ⊗ AB

we can define the mutual information (MI) between both algebras as

I (A,B) ≡ Srel(ρA∪B |ρA ⊗ ρB)

= SEE(A) + SEE(B)− SEE(A ∪ B) ≥ 0

where ρA∪B ≡ ρω,A, SEE(A ∪ B) ≡ S(ρω,A).

The mutual information measures correlations between the algebras AA

and AB .

• Strong Subadditivity: I (A,B) ≤ I (A,B ∪ C )

The correlations between A and B are always smaller (or equal) than the

correlations between A and any enlarged version of B.
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Summary: relative entropy and mutual information

• Given two states represented by their density matrices ρ1, ρ2

in a single algebra, the relative entropy Srel(ρ1|ρ2) ≡
tr(ρ1 log ρ1 − ρ1 log ρ2) quantifies how distinguishable the

states are in that algebra. The greater the algebra, the more

we can distinguish them. The relative entropy is always pos-

itive except if the states are equal, in which case it vanishes.

• Given a global state and two algebras A = AA ⊗ AB , the

mutual information I (A,B) ≡ SEE(A)+SEE(B)−SEE(A∪B)

quantifies the degree of entanglement shared by the algebras

in such state. It is monotonically increasing under inclusions,

I (A,B) ≤ I (A,B ∪ C ).
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A closer look?

⋆ There exists many additional interesting and entanglement-

related quantities (Rényi entropy, reflected entropy, negativ-

ity, entanglement of purification, etc.). Read about them

and find out what makes them special/relevant.
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Part II: Entanglement in QFT
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Warm up

• The fundamental objects in the standard approach to QFT

are quantum fields Φ(x). Operators are defined by smear-

ing them over spacetime regions with test functions, Φ[f ] ≡∫
Φ(x)f (x)d4x .

• The Hilbert space of states contains a special element, the

vacuum |Ω⟩, which has minimal energy and from which the

whole Hilbert space can be accessed by acting on it with

linear combinations of products of operators.

• Wightman’s reconstruction theorem states that the full infor-

mation about a QFT is encoded in its vacuum fluctuations:

{Φ(x),H} ⇔ ⟨Ω|Φ(x1) · · ·Φ(xn) |Ω⟩
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Entanglement and QFT?

All this sounds great, but it does not seem to tell us much about the

type of questions we would like to ask here, namely:

• What are the natural subsystems in QFT?

• How do we extend the notion of bipartition?

• How is entanglement manifest?

• How much entanglement is there?

• How do we quantify it?
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The algebraic approach in QFT

In the algebraic or Haag-Kastler formulation of QFT, the fundamental

objects are algebras of operators localized in spacetime regions:

for any

region W , the operators with support in that region close an algebra

A(W )

W
∂W

t

No operators can be localized in the interface ∂W .

The “natural” subsystems in QFT are therefore spacetime regions.
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Axioms for region algebras

Basic properties of region algebras (axioms):

• Isotony: Any operators localized in some region V are also localized

in any larger region W that contains it.

V ⊆ W ⇒ A(V ) ⊆ A(W )

• Microcausality: Operators localized in spacelike separated regions

must commute. Let V ′ be the causal complement of region V ,

V ′ = {x |x spacelike to y , ∀ y ∈ V } .

Operators in V ′ must commute with operators in the algebra of V :

A(V ′) ⊆ A(V )′
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Causal diamonds as fundamental regions

The fundamental regions are causal diamonds (domains of dependence

of pieces of space-like regions, W ≡ D(V )).

These are defined by

W = W ′′, ⇔ analogous to the property satisfied by von Neumann

algebras, A = A′′.

V

V ′V ′
x

t

W = V ′′ = W ′′

Causal diamonds are the minimal “physical laboratories” in which local

quantum experiments could be performed: A(V ) = A(W )
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Haag duality

When the causality condition becomes equality, A(V ′) = A(V )′, for ball

regions, the theory is said to satisfy Haag duality.

This is a rather weak

condition which holds for general QFTs.

On the other hand, when it holds for arbitrary regions, the property is

called simply duality. This takes place only for sufficiently “complete”

theories...
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Algebraic version of Wightman’s theorem?

What distinguishes a particular QFT from another?

The information is

not encoded in the algebras themselves, but in the relations between

algebras (the way they intersect each other and share operators). The

vacuum mutual information between spatially separated regions does

this: it measures correlations between algebras.

• Open question: is there an algebraic version of the Wightman recon-

struction theorem? Can we reconstruct the full information about

a QFT from the mutual information of subregions?

{A(W ),H} ⇔ I (V ,W )
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Summary: the algebraic approach to QFT

• In the algebraic approach, the fundamental objects are region

algebras. Spacetime regions are the natural subsystems in

QFT.

• If region V is contained in region W , the algebra of V is con-

tained in the algebra of W . Operators in the causal comple-

ment of V commute with operators in V : A(V ′) ⊆ A(V )′.

• Only sufficiently “complete” theories satisfy A(V ′) = A(V )′

for arbitrary regions V .

• An algebraic reconstruction theorem?

{A(W ),H} ⇔ I (V ,W )
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A closer look?

⋆ Read about the interplay between violations of the duality

relation for regions with non-trivial topology and superselec-

tion sectors

[More in Casini’s lectures]
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The Reeh-Schlieder theorem

By construction, we can reach any state in the Hilbert space H by acting

on the vacuum |Ω⟩ with general linear combinations and products of

operators.

Reeh-Schlieder theorem: We can reach any state in the Hilbert space

H by acting on the vacuum state |Ω⟩ with general linear combinations

and products of operators with support in any region algebra, regardless

of how small the spacetime region is!

The theorem follows from the analyticity properties of vacuum correlation

functions, which in turn result from the positivity of energy, Lorentz

invariance, and locality.
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The Reeh-Schlieder theorem

Consider creating a peanut in Andromeda by acting with local operators

supported in this room...

Let P be the “peanut operator”, supported in Andromeda and such that

⟨ψ|P|ψ⟩ ≈ 0 for states which do not contain a peanut in Andromeda,

and ⟨ψ|P|ψ⟩ ≈ 1 for states which do. In the vacuum state ⟨Ω|P|Ω⟩ ≈ 0

(no peanuts in Andromeda in the vacuum state).

According to R.S. theorem, ∃ some operator a with support in this room

such that

⟨aΩ|P|aΩ⟩ ≈ 1

namely, such that in that state there is a peanut in Andromeda.
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The Reeh-Schlieder theorem

Since a and P have support in space-like separated regions, they com-

mute, so

⟨aΩ|P|aΩ⟩ = ⟨Ω|a†Pa|Ω⟩ = ⟨Ω|Pa†a|Ω⟩ ≈ 1

and at the same time we know that ⟨Ω|P|Ω⟩ ≈ 0.

This may look a bit weird, but it is fine. It is just that a cannot be a

unitary operator (such that a†a = 1). Physically, we can only act with

unitary operators, so this is not possible in practice...

However, it makes manifest the existence of strong non-local quantum

correlations in the vacuum state.

⟨Ω|Pa†a|Ω⟩ ≠ ⟨Ω|P|Ω⟩ ⟨Ω|a†a|Ω⟩ ⇔ Manifest non-separability

41
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Summary: Reeh-Schlieder theorem

• Any state of the Hilbert space can be approximated by acting

with operators on the vacuum |Ω⟩.

• The Reeh-Schlieder theorem shows that, in fact, local opera-

tors with support in arbitrarily small regions can approximate

any state, even those “localized” very far away from it.

• The theorem makes manifest the existence of strong non-

local quantum correlations in the vacuum state.
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A closer look?

⋆ Read about the notions of “cyclic” and “separating” states

and their connection with the R.S. theorem.

⋆ Read about the issues that arise with the notion of “localized

states” as a consequence of the R.S. theorem and the role

played by “nuclearity conditions”.
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(No) Hilbert space factorization

Consider two space-like separated regions W and W ′.

If the Hilbert

space factorized as H = HW ⊗HW ′ , there would exist separable states

of the form |Φ⟩W ⊗ |Φ⟩W ′ . For such states, the connected correlation

function of two operators living in W and W ′ respectively would vanish

⟨OWOW ′⟩c ≡ ⟨OWOW ′⟩ − ⟨OW ⟩ ⟨OW ′⟩ = 0

However, we know that such correlation function diverges in general in

the vacuum state as both operators approach the same point in ∂W .

Since all states look identical to the vacuum at short distances, this

should be the case for all states. Hence, separable states cannot exist at

all in a QFT.

The Hilbert space does not factorize across spacelike-separated regions,

H ̸= HW ⊗HW ′ in QFT
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the vacuum state as both operators approach the same point in ∂W .

Since all states look identical to the vacuum at short distances, this

should be the case for all states. Hence, separable states cannot exist at

all in a QFT.

The Hilbert space does not factorize across spacelike-separated regions,

H ̸= HW ⊗HW ′ in QFT
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Entanglement everywhere

It is impossible to perform “isolating” operations that remove the en-

tanglement between any region and its spacelike complement.

Any pure

global state is necessarily mixed when restricted to both A(W ) and

A(W ′). Every state is “intrinsically entangled” across bipartitions.

This is related to the peculiar nature of region algebras in QFT, which

are type-III von Neumann algebras (for which all nonzero projections

are infinite and equivalent), and these have no pure states: all states are

intrinsically mixed! It is impossible to understand such mixed states in

terms of mixtures of pure states...
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Summary: intrinsic entanglement

• The vacuum is intrinsically entangled across any spatial bi-

partition. The algebrasAA andAB are type-III von Neumann

algebras, which have no pure states.

• The Hilbert space does not factorize, H ̸= HA ⊗ HB . If it

did, there would exist separable states. All states look like

the vacuum at short distances, so such states cannot exist.

• Local reduced states are always mixed, they cannot be rep-

resented by standard density matrices (and cannot be inter-

preted as statistical mixtures of pure states). Entanglement

is irreducible, it cannot be eliminated by local operations.

• The information about the QFT is not in the algebras them-

selves (they are all isomorphic), but in their relations.
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A closer look?

⋆ Read about the “split property” and how it helps define ap-

proximate notions of Hilbert space factorization in this con-

text.

⋆ Read about the “ Bisognano-Wichmann theorem” and how

it hints at the type-III nature of region algebras in QFT.
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A philosophical observation...

...despite its conservative way of dealing with physical principles,

algebraic QFT leads to a radical change of paradigm. Instead of

the Newtonian view of a space-time filled with a material content,

one enters the reality of Leibniz created by relation (in particu-

lar inclusions) between “monads” (the hyperfinite type-III local

von Neumann factors, which as single algebras are nearly void of

physical meaning). (Schroer’98)
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(No) entanglement entropy in QFT

Fix some time-slice Σ, divide it in two regions A and B:

A
∂A

B

t

If the Hilbert space factorized, there would exist some state |ψ⟩ such

that |ψ⟩ = |ϕ⟩A ⊗ |ϕ̃⟩B , which would imply

SEE(A) = 0 ⇐ this would require some kind of firewall in ∂A

In QFT, the entanglement entropy of subregions is divergent in any state,

SEE(A) = +∞ ∀ spatial bipartitions and∀ states

There is infinite entanglement between any pair of adjacent regions.
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A closer look?

⋆ Read about the firewalls proposal (and a putative breakdown

of entanglement across the horizon) in the context of the

black hole information paradox.
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Part III: From the lattice to the continuum
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QFTs from the lattice

Sometimes it is possible to think of a QFT as the continuum limit of

a discrete model.

In the limit in which the lattice spacing goes to zero

(compared with the relevant physical scales) one would expect to re-

produce whatever results may be well-defined in the continuum theory.

Such universal quantities should be independent of the particular regu-

lator utilized

A

L

δ
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The “area-law” of entanglement entropy

From this perspective, the EE divergence can be understood as an infinite

accumulation of correlations between pairs of entangled modes living at

both sides of the interface ∂A as the continuum limit is approached.

For any QFT one finds

SEE(A) = c0
Area(∂A)

δd−2
+ . . .

where δ is a “UV cutoff” (the lattice spacing) and c0 is a non-universal

constant.

This area law of EE holds in any state (any state looks like the vacuum

at sufficiently short distances).
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General structure of EE

Given a QFTd and a smooth entangling region A, the EE takes the form

S
(d)
EE = bd−2

Ld−2

δd−2
+ bd−4

Ld−4

δd−4
+

· · ·+

b1
H
δ + (−1)

d−1
2 suniv , (odd d)

b2
L2

δ2
+ (−1)

d−2
2 suniv log

(
L
δ

)
+ b0 , (even d)

L is some characteristic length of A.

• Local (given by integrals of curvature invariants over ∂A)

• They depend exclusively on UV physics ⇐ state independent

• Non-local (not given by integrals over ∂A, but rather depending

on the whole A)

• They capture IR physics ⇐ state dependent
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EE universal terms

For CFTs, the only universal terms appear in suniv.

These coefficients

capture certain bits of information which characterise the corresponding

theory.

For example, in d = 2 theories, for a single interval region of length L,

S
(2)
EE =

c

3
log

(
L

δ

)
+ b0 ,

where c is the Virasoro central charge of the theory.
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EE universal terms

More generally, in even dimensions the universal term is logarithmic and

suniv is given by a linear combination of local integrals over ∂V weighted

by theory-dependent coefficients which can be shown to coincide with

the trace-anomaly charges.

For instance, in d = 4:

⟨Tµ
µ ⟩ = − a

16π2
X4 +

c

16π2
CµνρσC

µνρσ

and

S
(4)
EE = b2

H2

δ2
−
[
a

2π

∫
∂V

R+
c

2π

∫
∂V

(
trk2 − 1

2
k2

)]
log

(
H

δ

)
+ b0 .

The dependence on the geometric details of the entangling-surface and

on the CFT considered appear highly “disentangled” from each other.

Similar story in d = 6, 8, . . .
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EE universal terms

In odd dimensions, no logarithmic term is present for smooth entangling

surfaces and the universal contribution is a constant term

which no longer

corresponds to an integral over ∂V . (Also, there is no trace anomaly)

Simplest case corresponds to d = 3 CFTs, for which

S
(3)
EE = b1

H

δ
− F (V ) .

For a round ball region B2, the universal term equals the Euclidean free

energy of the corresponding theory on S3, F (B2) = − logZS3 .

In F , the dependence on the geometric details of V and the dependence

on the details of the CFT are no longer disentangled from each other.

Similar story in d = 5, 7, . . .
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corresponds to an integral over ∂V . (Also, there is no trace anomaly)

Simplest case corresponds to d = 3 CFTs, for which
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Summary: entanglement entropy in QFT

• The EE is divergent in any state of any QFT for any bipar-

tition.

• From a lattice perspective, this can be understood as an infi-

nite accumulation of correlations between pairs of entangled

modes at both sides of ∂A. The leading term in a regulated

expansion of EE is always proportional to the area of ∂A.

• Certain terms in such expansions are independent of the way

we regulate the theory and capture information about the

continuum theory.
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A closer look?

⋆ Read about the explicit dependence of the universal terms

on the geometry of the entangling region and the theory un-

der consideration.

You can read about the “Mezei formula”

which allows one to extract the stress tensor two-point func-

tion charge CT from the EE of slightly deformed disks, and

also about the effects of introducing geometric singularities

(like corners) in ∂V and how those modify the structure of

divergences and universal terms. You can also read about

the existing general universal bounds on suniv as a function

of the geometry of V .

[More in Moreno and Lasso’s talks]

⋆ Read about the “Casini-Huerta-Myers” maps and the tools

involved in the proof that F (Bd−1) = − logZSd .
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Real time method for free fields in the lattice

The evaluation of (regulated) EE and related quantities is in general a

very challenging problem in QFT.

Roughly, we can divide the existing

techniques in “Euclidean” and “Real-time” methods.

Euclidean methods usually make use of an Euclidean path-integral rep-

resentation of ρA. On the other hand, in the real-time approach, one

tries to obtain ρA in terms of correlators of the fundamental fields.

Here I will give you a flavor of the second type of methods in the case

of free fields in the lattice.
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Real time method for free fields in the lattice

We start with a lattice version of the model and at the end we take

the continuum limit.

The knowledge of all correlators inside A must be

enough to determine the density matrix ρA. In the case of free fields,

Wick’s theorem implies that all correlators are reduced to two-point func-

tions such as Xij ≡ ⟨ϕiϕj⟩.

Let us assume we know the form of the correlators inside A. The idea is

to consider a smart ansatz for the density matrix (a quadratic modular

Hamiltonian) and impose consistency between the known correlators Xij

and the result obtained using the ansatz, namely, tr(ρAϕiϕj). If the

ansatz is suitable, it is possible to extract the eigenvalues of ρA in terms

of the correlators.

Once we have the eigenvalues of ρA, we can rewrite the EE in terms of

the correlators using the usual formula (SEE = − tr ρA log ρA).
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Free bosons

Consider a system of N scalar fields and momenta in a lattice.

By

definition, they satisfying canonical commutation relations

[ϕi , πj ] = iδij , [ϕi , ϕj ] = [πi , πj ] = 0 .

Define the correlation functions associated to ρA as

⟨ϕiϕj⟩ ≡ Xij , ⟨πiπj⟩ ≡ Pij , ⟨ϕiπj⟩ = ⟨πjϕi ⟩∗ =
i

2
δij .

The ansatz for the density matrix reads

ρA = ke−
∑

A(Mijϕiϕj+Nijπiπj ) .

We can diagonalize it to obtain the eigenvalues of ρA in terms of M and

N. Next, we impose the consistency relations, Xij = tr(ρAϕiϕj), etc.
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Free bosons

The result is that the eigenvalues of ρA can be written in terms of the eigenvalues

of the matrix Cij ≡
[√

XP
]
ij
.

As a consequence, we can write the EE in terms

of Cij . The result reads

SEE(A) = tr[(C + 1/2) log(C + 1/2)− (C − 1/2) log(C − 1/2)] ,

or in terms of the eigenvalues of C ,

SEE(A) =
∑
k

[(λk + 1/2) log(λk + 1/2)− (λk − 1/2) log(λk − 1/2)]

The thing is that computing correlators like Xij and Pij (and consequently, Cij)

is usually something rather doable, so we can evaluate SEE(A) using the above

formula once we know them.
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Free fermions

The story is very similar for free fermions. In that case we start with N fields

satisfying anticommutation relations

{ψi , ψ
†
j } = δij ,

and we define the correlators in the state ρA by

⟨ψiψ
†
j ⟩ ≡ Cij , ⟨ψiψj⟩ = ⟨ψ†

i ψ
†
j ⟩ = 0 .

The density matrix ansatz is analogous,

ρA = ke−
∑

A Hijψ
†
i ψj

from which we can extract the eigenvalues of ρA as a function of Hij .

Using the consistency relations, the eigenvalues of ρA can be written in terms

of the eigenvalues of Cij , so we can write the EE in terms of the correlators

matrix. The result is:

SEE(A) = − tr[(1− C ) log(1− C ) + C logC ]
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Example: free fermion in d = 2

Consider a free fermion in d = 2, with A being a single interval of length LA.

The lattice Hamiltonian reads

H ferm.
latt. = − i

2

∑
j

[
ψ†
j ψj+1 − ψ†

j+1ψj

]
,

The vacuum state correlators read

Cjl ≡ ⟨ψjψ
†
l ⟩ =


(−1)(j−l)−1
2πi(j−l) j ̸= l

1
2 j = l

.

For a general CFT2, the result for the EE of an interval reads

S
(2)
EE =

c

3
log(LA/δ) +O(δ0)

where c is the “Virasoro central charge” of the theory. In the case of the free

fermion, c = 1/2. So the coefficient of the logarithmic term is 1/6.
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Example: free fermion in d = 2

For technical reasons (“fermion doubling”), when performing lattice calculations

for fermions in d = 2 one gets an extra factor of 2.

A small program in

Mathematica yields perfect agreement:

66



Example: free fermion in d = 2

For technical reasons (“fermion doubling”), when performing lattice calculations

for fermions in d = 2 one gets an extra factor of 2. A small program in

Mathematica yields perfect agreement:

66



Summary: real time methods for free fields

• The exist many different approaches which allow us to eval-

uate the EE of region algebras in certain cases.

• I have briefly explained one: the real-time method for free

fields, which allows one to evaluate it in terms of expectation

values of the fundamental fields, which are usually much eas-

ier to compute in explicit models (and particularly suitable

for the lattice).
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A closer look?

⋆ Write your own code (or use mine) for computing the EE

of d = 2 free fermions in the lattice and try to reproduce

the c = 1/2 result. Explore the dependence of the mutual

information of pairs of intervals as a function of their distance

using the same code.
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The path to the continuum...

Feature Survives? What changes?/what replaces it?

Subsystem algebras ✓ type-I algebras =⇒ type-III algebras

H = HA ⊗HA′ ✗ Split property

Complement = Commutant .
For balls yes (Haag duality); for regions with

non-trivial topology, not always

Partial trace density matrix

ρA

✗ Closest surviving object ⇒ modular operator

(continuum version of ∆ = ρA ⊗ ρ−1
A′ )

Modular Hamiltonian KA =

− log ρA

✗ Closest surviving object ⇒ full modular Hamil-

tonian (continuum version of KA⊗ I− I⊗KA′ )
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The path to the continuum...

Feature Survives? What changes?/what replaces it?

Entanglement across sub-

systems

✓
On steroids (unavoidable, structurally in-

grained)

Entanglement entropy

SEE = − tr ρA log ρA

✗ Ill-defined. Divergent ∀ state ∀ bipartition. Us-

ing regulator ⇒ universal terms

Relative entropy Srel =

tr(ρ1 log ρ1 − ρ1 log ρ2)
✓

Well defined (Araki). All states look the same

at short distances, so all UV divergences cancel

each other in the subtraction

Mutual information ✓
Well defined (using relative entropy). Using

regulated EE definition, all divergences cancel

each other in the continuum limit
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Part IV: QFT from entanglement
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Mutual information in QFT

As opposed to the entanglement entropy, the mutual information of pairs

of region algebras is well defined in a QFT.

A B

From the regulated theory point of view, all divergences appearing in

I (A,B) = SEE(A) + SEE(B)− SEE(A ∪ B)

exactly cancel each other in the continuum limit.

On the other hand, it can be rigorously defined directly in the continuum

using its definition in terms of the relative entropy
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Tripartite information in QFT

Generalization to three regions: tripartite information

I3 ≡ SEE(A) + SEE(B) + SEE(C )− SEE(AB)− SEE(AC )− SEE(BC ) + SEE(ABC )

= I (A,B) + I (A,C )− I (A,BC )

It measures the non-extensivity of mutual information. It can have either sign:

• I3 < 0 ⇔ “monogamous” mutual information: A shares less information

with B and C individually than with the union B ∪ C .

e.g., holographic theories

• I3 > 0 ⇔ “non-monogamous” mutual information: A shares more infor-

mation with B and C individually than with the union B ∪ C .

e.g., free fields in 2 + 1 dimensions

• I3 = 0 ⇔ “extensive” mutual information: the mutual information is

additive (or extensive) as a function of its arguments

e.g., free fermions in 1 + 1 dimensions
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N-partite information in QFT

Generalization to N regions: N-partite information

IN(A1,A2, . . . ,AN) ≡ −
∑
σ

(−1)#σSEE(σ) , σ ⊂ {A1,A2, . . . }

= IN−1(⋆,AN−1) + IN−1(⋆,AN)− IN−1(⋆,AN−1 ∪ AN) ,

where ⋆ ≡ A1, . . . ,AN−2. It measures the non-extensivity of IN−1.

It can have either sign in general.
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Summary: N-partite information in QFT

• The MI for pairs of non-intersecting region algebras is well-

defined in QFT. If we use a regulator, all the EE divergences

cancel each other in the continuum limit.

• Using the MI as a building block, we can define associated

multi-partite notions for an arbitrary number of regions as

IN = IN−1(⋆,AN−1) + IN−1(⋆,AN)− IN−1(⋆,AN−1 ∪ AN) ,

⋆ ≡ A1, . . . ,AN−2.
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Quantum Field Theory from entanglement?

QFT formulations and reconstruction theorems

Formulation in terms of

quantum fields Φ(x)
⇐⇒

Vacuum expectation values

⟨Ω|Φ(x1)Φ(x2) · · · |Ω⟩

Formulation in terms of

algebras A(A)
?⇐⇒

Vacuum mutual informations

I (A,B)
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Quantum Field Theory from entanglement?

Is there a universal description of QFT in terms of

vacuum mutual informations?

↙ ↘

If so, what are the general axioms

satisfied by I (A,B)?

Given I (A,B) for all regions, how

do we reconstruct the theory?
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Mutual information as a geometric regulator

The MI can be used as a geometric regulator of EE.

Given some region

A, consider slightly smaller and greater versions of it A−, Ā+

A+

A− ε

Then, the EE of A can be approximated as

S
(ε)
EE (A) ≈

1

2
Iε(A

+,A−) , (ε≪ LA)

where the buffer zone width ε plays the role of UV regulator.

All EE universal terms are robustly captured by the MI. This is not just

a technical curiosity: it becomes crucial in certain situations (e.g., for

general odd-dimensional QFTs or for orbifold theories).
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QFT from Mutual information

On the other hand, a systematic way of extracting CFT data (scal-

ing dimensions and spins of primary operators + OPE coefficients)

can

be engineered by considering long-distance expansions of MI for (hy-

per)spherical regions

A B
L

On general grounds, the MI satisfies the bound

I (A,B) ≥ 1

2

⟨OAOB⟩2c
||OA||2||OB ||2

,

for any operators OA, OB supported in A and B, respectively.
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QFT from Mutual information

A B
L

For CFTs,

⟨OAOB⟩ ∼ L−2∆

⇒ I (A,B) ≥ |α|L−4∆

where ∆ ≡ lowest scaling dimension of the theory.

This is actually saturated

I (A,B) = f (d ,∆)
R2∆
A R2∆

B

L4∆
+ . . .

where f (d ,∆) is a theory dependent quantity which also depends on the

shape of A and B.
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QFT from Mutual information

Explicit formulas exist for (arbitrarily boosted hyper)spherical regions of

radii R separated a distance L,

I (A,B) = #s ·
√
πΓ[2∆ + 1]

4Γ[2∆ + 3
2 ]

R2∆
A R2∆

B

L4∆
+ . . .

where #s is a fixed geometric tensorial structure which depends on the

spin of the primary O with the smallest scaling dimension (e.g., #0 = 1).

The result can be generalized to the N-partite information with N =

3, 4, . . . . In the case of the tripartite information, one finds, for equal

radii equiseparated spheres

I3(A,B,C ) = −

[√
πΓ[3∆ + 1]

4Γ[3∆ + 3
2 ]

C 2
OOO −

26∆Γ[∆ + 1
2 ]

3

2πΓ[3∆ + 3
2 ]

]
R6∆

L6∆
+ . . .

if lowest-dim operator O is a scalar, where ⟨OAOBOC ⟩ ∼ COOO/L
3∆.
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QFT from Mutual information

From the leading term of the mutual information we can extract the

conformal dimension of the leading primary of the theory and its spin

I2 → ∆, s

From the leading term of the N-partite information we can extract its

N-point function

I3 → COOO , I4 → ⟨OOOO⟩ , . . .

Subleading terms in the long-distance expansions will produce the rest

of dimensions and OPE coefficients. Doing this explicitly is easier said

than done...
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Summary: QFT from MI

• CFT data (scaling dimensions, spins, OPE coefficients) ex-

tractable from long-distance expansion of MI...

A B
L

• CFT universal charges (central charges, trace-anomaly coef-

ficients, stress-tensor correlators, sphere partition functions,

etc.) extractable from short-distance expansions of MI

A+

A− ε
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A closer look?

⋆ Read about the “Réplica trick” and “twist operators”, and

the role they play in the long-distance expansion of mutual

information.

[More in Takayanagi’s lectures]
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QFT entropy cone

What are the known axioms satisfied by mutual information in QFT?

• I (A,B) ≥ 0 (Posivity)

• B ⊆ C ⇒ I (A,B) ≤ I (A,C) (Strong subadditivity)

• I (A,B) = I (B,A) (Symmetry)

• I (A,B) = I (ΛA+ x ,ΛB + x) (Poincaré invariance)

• lim|x|→∞ I (A,B + x) = 0 (Clustering)

• For X ,Y with boundary in the same null plane

I (A,X ) + I (A,Y ) ≤ I (A,X ∩ Y ) + I (A,X ∪ Y ) (Markov property)

• For A,B sharing planar boundary proportional to η

I (A,B + ϵη) ∼ ϵ−(d−2) as ϵ → 0 (Area law)
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QFT entropy cone

Very few inequalities, but with strong consequences, e.g.,

• Renormalization Group flows irreversibility in d = 2, 3, 4 (but not in

d ≥ 5)

• Some (but now all) of the known unitarity bounds for general the-

ories

Every QFT realizes the axioms in a particular way, giving rise to a “QFT

entropy cone” (
⊗

i Theoryi ⇔ Sums of entropies)

Some solutions correspond to scaled limits of CFTs, e.g., the Ryu-

Takayanagi formula for large-N CFTs with Einstein gravity duals

Sholo(A) = ext
ΓA∼A

[
Area

(
ΓA
4G

)]
+ . . . [More in Takayanagi’s lectures]
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QFT entropy cone

Another explicit realization of the axioms is given by the “Extensive

Mutual Information” model,

defined by the condition

I3(A,B,C ) = 0 ⇔ I2(A,B) + I2(A,C ) = I2(A,B ∪ C )

for all regions A,B,C .

Interestingly, added to the axioms, this leads to a closed explicit geo-

metric formula

IEMI
2 (A,B) = 2κ(d)

∫
∂A

dσA

∫
∂B

dσB
nA · nB

|xA − xB |2(d−2)

where κ(d) is a constant characterizing the model.
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QFT entropy cone

In d = 2 the EMI model describes a free fermion.

In d > 2 it satisfies numerous consistency checks and for years it was

thought that it may describe the mutual information of an actual CFT.

However, studying the long-distance expansion of IEMI
2 (A,B) for boosted

(hyper)spherical regions it can be shown that the EMI model cannot

correspond to any actual theory or limit of theories.

Some realizations of the MI axioms do not correspond to any

actual theory! ⇒ are we missing axioms?
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Summary: axioms for mutual information in QFT

⋆ The mutual information of pairs of region algebras satisfies a

set of structural properties, “axioms”, valid for general QFTs.

⋆ These can be used to establish various general theorems in

QFT.

⋆ Each QFT provides a particular “resolution” of the axioms.

However, there exist resolutions of the axioms which do not

correspond to actual QFTs. Are we missing axioms?
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A closer look?

⋆ Do not forget to go to the Giambiagi school webpage, down-

load these slides and have a closer look at them!
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The End
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BONUS
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Roughly, the logic goes as follows:

• The EE can be obtained as the n → 1 limit of the Rényi entropy

S (n)(A) =
1

1− n
log

[
Z (C(n)

A )

Z n

]

where C(n)
A ≡ replica manifold.

• Identification process of region A in consecutive copies ⇔ twist operator

Σ
(n)
A with support on A: Z (C(n)

A )/Z n = ⟨Σ(n)
A ⟩

• It is convenient to extract the identity operator contribution,

Σ
(n)
A ≡ ⟨Σ(n)

A ⟩ (1 + Σ̃
(n)
A )

• Then, the N-partite information can be written as

IN(A1, . . . ,AN) = lim
n→1

(−)N+1

1− n
⟨Σ̃(n)

A1
Σ̃

(n)
A2

· · · Σ̃(n)
AN

⟩
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• At long distances, Σ̃
(n)
A ≈ sum of products of local operators on A

• Leading contribution comes from lowest-dimensional operator, O

Σ̃
(n)
A =

∑
i<j

CA
ij Oi (xA)Oj(xA) + . . .

where i , j ⇔ replica indices

• From this it is easy to show that IN ∼ (R/L)2N∆ for general regions

• For spherical entangling surfaces,

CA
ij =

R2∆

sin2∆
[
π(i−j)

n

]
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For instance, for the tripartite information we have

I3(A1,A2,A3) = − lim
n→1

1

n − 1
⟨Σ̃(n)

A1
Σ̃

(n)
A2

Σ̃
(n)
A3

⟩

where

⟨Σ̃(n)
A1

Σ̃
(n)
A2

Σ̃
(n)
A3

⟩ = (R1R2R3)
2∆

∑
i<j

∑
k<l

∑
m<n

CijCklCmn ⟨Oi
A1
Oj

A1
Ok

A2
Ol

A2
Om

A3
On

A3
⟩

• Contribution 1: ∑
i<j

C3
ij ⟨O

i
A1
Oi

A2
Oi

A3
⟩ ⟨Oj

A1
Oj

A2
Oj

A3
⟩

• Contribution 2:∑
i<j<k

CijCikCjk

(
⟨Oi

A1
Oi

A3
⟩ ⟨Oj

A1
Oj

A2
⟩ ⟨Ok

A2
Ok

A3
⟩+ permutations of {A1,A2,A3}]

)

which appear written in terms of correlators of O:

⟨OA1
OA2

⟩ = 1
L2∆12

, ⟨OA1
OA2

OA3
⟩ = COOO

L∆12L
∆
13L

∆
23
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So what CFT is described by the EMI model in d > 2? [Agon, PB, Casini]

• We apply the entanglement bootstrap to the EMI model

• Leading order term in long-distance expansion for spherical regions:

IEMI
2 =

4(d − 1)(d − 2)πd−1κ(d)

Γ[d+1
2 ]2

[2(nA · ℓ)(nB · ℓ)− (nA · nB)] ·
Rd−1
A Rd−1

B

L2(d−1)
+ . . .

Recall long-distance expression for a CFT whose lowest-dim opera-

tor is a fermion:

I f2 = 2⌊
d
2
⌋+1

√
πΓ[2∆ + 1]

4Γ[2∆ + 3
2 ]

[2(nA · ℓ)(nB · ℓ)− (nA · nB)] ·
R2∆
A R2∆

B

L4∆
+ . . .

We learn that the EMI model necessarily contains a free fermion

(∆ = (d − 1)/2) as its lowest-dim operator
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