Lecture 3: A Background Independent Algebra in
Quantum Gravity

Edward Witten



In ordinary quantum mechanics, we usually consider the observer to
be outside the system that is being observed. This is problematical
in the presence of gravity, most obviously in the case of a closed
universe: No one can look at a closed universe from outside.



In ordinary quantum field theory, as discussed in the last few days,
we can pick an arbitrary region U in spacetime and define an
algebra of observables in region U:

There are problems with this in the presence of gravity: With
spacetime fluctuating, it is in general hard to explain what we
mean by the region U. This only makes sense for particular regions
that can be defined invariantly (for example, the exterior of a black
hole horizon). But more fundamentally, why do we want to define
an algebra unless it is the algebra of observables available to
someone who lives in the spacetime?



So | want to construct an algebra that describes the measurements
made by an observer. | will assume that the observer knows the
laws of nature but has no knowledge of the state of the universe
except whatever is gleaned from observation. (The second part fits
our situation in the universe, but the first does not, since in the
last few centuries we have been using our observations to learn the
laws of nature as well as learning the state of the universe, i.e. part
of what is usually called cosmology. | make the first assumption in
part because it would be much harder to model an observer who is
trying to learn the laws of nature. Also | suspect we should make
this assumption if we want to arrive at the Bekenstein-Hawking
entropy.)



The algebra will depend on the laws of nature, but it is required to
be universal and background independent, meaning that is is
defined once and for all without any knowledge of the specific
spacetime in which the observer is living. Different spacetimes will
correspond to different representations of the same algebra.



Some relevant papers:

Algebras of operators outside a black hole horizon

Leutheusser and Liu (2021)
EW (2021), Chandrasekharan, Penington, and EW (2022)

Algebra for a static patch in de Sitter space:

(*) Chandrasekharan, Longo, Penington, and EW (2022)
In JT gravity with negative cosmological constant
Penington and EW (2023), Kolchmeyer (2023)

In a general diamond-like region

Jensen, Sorce, and Speranza (2023)

Some recent developments

C. H. Chen and Penington (2024)
Kudler-Flam, Leutheusser, and Satishchandran (2024).



We expect that in a full theory of quantum gravity, an observer
cannot be introduced from outside but must be described by the
theory. What it means then to assume the presence of an observer
is that we define an algebra that makes sense in a subspace of
states in which an observer is present. We don't try to define an
algebra that makes sense in all states.



First let us describe the situation in the absence of gravity. The
observer propagates in a spacetime M on a geodesic 7:

The worldline is parametrized by proper time 7. As in classic work
of Unruh (1976), the observer measures along =, for example, a
scalar field ¢, or the electromagnetic field F,,, or the Riemann
tensor R,,,qg, as well as their covariant derivatives in normal
directions.



An elementary but not so well known point is that smearing a local
field ¢ along a timelike curve is indeed sufficient to obtain a
(densely defined, unbounded) operator. Hence there does
rigorously exist an algebra of operators defined by smearing along
the timelike worldline . By contrast, smearing ¢ in space is not
effective at defining an operator, unless ¢ has rather low
dimension. (As an important special case of this, it is not possible
to define an operator by smearing a local field on a cut of a black
hole or cosmological horizon.)



Let me take a moment to explain this. First the reason that smearing is
necessary is that if |Q2) is a Hilbert space state (for example the vacuum)
and ¢(x) is a local “operator,” then ¢(x)|Q2) is never a Hilbert space
state since its norm is

Qo' (x)¢(x)|2) (Q6(x)0(y)|Q) = co.

Does smearing in d spatial dimensions help? Only if ¢ has rather low
dimension: if

= lim
y*>X

b7 = / dx F(x)b(x)

is smeared in d spatial dimensions, then the norm of ¢¢|Q) is

(Qlofor|Q) = /ddxddy7(X)f(y)<QI¢T(X)¢(y)IQ>-
If  has dimension A as measured in the ultraviolet,
T (x)d(y) ~ |x — y| 722 + less singular terms
then (Q|pl¢¢|Q) < oo if and only if
2A < d.

For example, in QCD in the real world, d = 3, the minimum value of A is
3, so this is an example in which no operator can be defined by smearing
in spatial directions.



A typical example of this came up yesterday. The quantity
Ko = [ dxdyxToo(x.7)
x>0

is obtained by smearing in space only the local operator Tpg. As
Too has dimension A = d + 1, thus 2A = 2d + 2 > d, it should
not be a surprise that Kr does not make sense as a Hilbert space
operator.



Instead, smearing in time does make a true operator regardless of
the value of A. The Feynman ie is crucial: we have

812, )p(%, t) ~ (t— t —ie) 2D 4 ...

Now define

be(%) = / dt F(£)6(%, 1)

where f is a smooth smearing function of compact support. The
norm of the state ¢¢(x)|Q2) is then

ORI = [ A FOFEYE - ¢~ i) 2
(plus terms that are similar but less singular, from higher order

terms in the OPE). This integral is clearly convergent for ¢ > 0
and | claim that it has a finite limit for ¢ — 0.



For this, we just write

(t—t —ie) 22 = C”gin(t —t' — )24

(for arbitrary integer n > 0 and a suitable constant C,) so

(t—t )n 2A

(pr(X)Q2| (X)) = Cp /dtdtf 8

= (-1)" C,,/dtdt 8;1;(,11?) F(t)(t — ' —ie)" 22,

For sufficiently large n, this is obviously finite as n — 0.




So it is possible to define an algebra of operators smeared along a
timelike worldline . But what is this algebra? This question is
answered by the “timelike tube” theorem (Borchers 1961; Araki
1963; Strohmaier 2000; Strohmaier and EW 2023), which is a
close cousin of HKLL reconstruction in AdS/CFT duality. In
quantum field theory without gravity, the algebra of operators
along a timelike worldline ~y is equivalent to the algebra of
operators in a certain open set £(7):




So in the absence of gravity, the algebra A() of operators along a
timelike geodesic 7y is equivalent to the algebra of operators in a
certain open set. Hence A(7y) is a reasonable substitute for the
algebra of a region, which we usually consider in the absence of
gravity, and appears to make more sense when gravity is included.



To understand more concretely what is A(7y) in the presence of
gravity, let us focus on a particular observable, say ¢(x(7)) for a
scalar field ¢; | will abbreviate this as ¢(7). When we take gravity
to be dynamical, we have to consider that the same worldline can
be embedded in a given spacetime in different ways, differing by
T — T + constant:

So ¢(7) isn't by itself a meaningful observable: we need to
introduce the observer's degrees of freedom and define 7 relative
to the observer’s clock.



In a minimal model, we equip the observer with a Hamiltonian
Ho,s = mc? + g, and a canonical variable p = —idiq. However, it
turns out that it is better to assume that the observer energy is
bounded below, say g > 0 (so m is the observer's rest mass). We
then only allow operators that preserve this condition, so for
example e~"?, which does not preserve g > 0, should be replaced
with Me~"PM, where M = ©(q) is the projection operator onto
qg=>0.



We now want to allow only operators that commute with
H = Hpux + Hobs,

where Hyyix is (any) gravitational constraint operator that
generates a shift of 7 along the worldline. An operator that
commutes with H is invariant under a spacetime diffeomorphism
that moves the observer worldline forward in time, together with a
time translation of the observer's system.



How do we find operators that commute with
H = H 4+ Hyps = Hyuik + Hobs? Since

[Houte, ¢(7)] = —ig(7),

we need '
[9, ()] = ig(7),
which we can achieve by just setting

or more generally

for a constant s.



So a typical allowed operator is ¢(p + s), or more precisely

s = N(p + 5) = ©(q)d(p + 5)O(q).

In addition to these operators (with ¢ possibly replaced by any
local field along the worldline such as the electromagnetic field or
the Riemann tensor) there is one more obvious operator that
commutes with ﬁ namely g itself. So we define an algebra Ay
that is generated by the <$s as well as gq.



The setup hopefully sounds “background independent,” since we
described it without picking a background. However, background
independence really depends on interpreting the formulas properly.
We will not get background independence if we interpret ¢s and g
as Hilbert space operators. To get a Hilbert space on which ¢ and
q act, we have to pick a spacetime M in which the observer is
propagating. Then we won't have background independence.

To get background independence, we have to think of Ags as an
operator product algebra, rather than an algebra of Hilbert space
operators. The algebras for different M’s are inequivalent

representations of the same underlying operator product algebra.



In the absence of gravity, we would characterize the objects ¢(7)
by their universal short distance singularities:

H(T)p(T') ~ C(r — 7' —ie) 22 4 ...

This characterization does not require any knowledge about the
quantum state. After coupling to gravity and including the
observer and the constraint, the short distance expansion in powers
of 7 — 7/ becomes an expansion in 1/q. We characterize A
purely by the universal short distance or 1/q expansion of operator
products. With that understanding, Agps is
background-independent.



There is a very special case that turns out to be important. This is
the case that M is an empty de Sitter space, with some positive
value of the effective cosmological constant.
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The green region is called a static patch, because it is invariant
under a particular de Sitter generator H that advances the proper
time of the observer.



In the absence of gravity, there is a distinguished de Sitter invariant
state Wqg such that correlation functions in this state are thermal
at the de Sitter temperature Tys = 1/84s (Gibbons and Hawking;
Figari, Nappi, and Hoegh-Krohn). For example, this means that
two point functions (Wqs|o(7)¢'(7')|Wges) have two key properties:

(1) Time translation symmetry:

(Waglo(T + 5)¢' (7' + 5)|Was) = (Was|o(T)¢' (7')|Was)-

(2) The KMS condition, which says roughly:
(Was|o(7)¢'(0)|Was) = (Was|¢'(0)p(r — iB)[Was).

(A precise statement involves holomorphy of the correlation
function in a strip in the complex plane.)



Including gravity and the observer, we define a special state in
which the observer energy has a thermal distribution at the de
Sitter temperature

wmax = wdSe_Bdsq/2 V 5(187

and we replace operators ¢(7) by “gravitationally dressed”
operators ¢s = MNo(p + s)IN. Then a straightforward computation
shows that

(1") We still have time-translation symmetry

<wmax’$s$/5/’wmax> = <wmax’($5+cals’+clwmax>; ceR.

(2") The KMS condition simplifies:

<wmax|$s$,5’|wmax> = <wmax|$ls’$s|wmax>-



Condition (2') tells us that if, for any a € Agps, we define
Tra = (Vpax|a|Vmax),
then the function Tr does have the algebraic property of a trace:
Trab = Trba, a,bc Ag.

This function has the property that Trafa > 0 for all a # 0,
meaning in particular that it is “nondegenerate.” Note that if
V. ax is normalized then

Trl=1.



Let Hqgg be the Hilbert space that we get by quantizing fields in de
Sitter space (in perturbation theory). Let W be any state in Hqg
and consider the function a — (V|a|V), a € Ayps. Roughly
speaking, because A,ps has the nondegenerate trace Tr, we can
hope that there is a “density matrix” p € Ayps such that

(V]ja|V) =Trap, a€ Agps.

Rather as in ordinary quantum mechanics, we expect p to be a
positive element p € Ay with Tr p = 1. For example, let us find
the density matrix of the state W, x.



The definition of the trace makes it clear that the density matrix of
the state Wi ax iS omax = 1, since to satisfy

<wmax’a|wmax> =Traocmax = <wmax‘agmax’wmax>a

we set

Omax = 1.

This means that W, is “maximally mixed,” similar to a
maximally mixed state in ordinary quantum mechanics whose
density matrix is a multiple of the identity.



Now if a € Ags is any operator, consider the state WV, = aW . .
It has a density matrix py, = aal, since for any b € Agps,

(W,|b|W,) = (V. ]a’ba|Way) = Tra'ba = Trbaal.

But states W, are dense in Hgg — roughly by the Reeh-Schlieder
theorem, which is the fundamental result about entanglement in
quantum field theory. So a dense set of states have density
matrices.



If we want all states to have density matrices, we need to take a
useful further step. The Hilbert space Hys is the closure of a dense
set of states aWqg, so if we want every state in Hqg to have a
density matrix, we have to similarly take a closure of Ags. This
closure, which is no longer background independent, can be defined
as the von Neumann algebra generated by bounded operators in
Agps. | will call the closure Aqps qs. Every state in Hgg has a
density matrix in (or technically, in general affiliated to) Agps,as. It
is in this step that von Neumann algebras enter the picture.



Now let us recall that Bekenstein and Hawking discovered that one
should attribute an entropy to a black hole horizon. Not too long
after, Gibbons and Hawking suggested that one should also
attribute an entropy to a cosmological horizon such as the horizon
experienced by an observer in de Sitter space:

Future
orizon
1 o

Observer
worldline

ast
horizon




However, a microscopic interpretation of what is meant be the
entropy of a cosmological horizon has been obscure — even
compared to the still largely mysterious black hole entropy. We can
now give at least a partial answer to this question, at least for the
case of de Sitter space.



Indeed once we know that every state of the observer algebra has a
density matrix, we can define entropies as well. The von Neumann
entropy of a density matrix p is as usual

5(p) = —Trplog p.

In ordinary quantum mechanics, a maximally mixed state has a
density matrix that is a multiple of the identity, and it has the
maximum possible von Neumann entropy. The analog here is
Wiax, With density matrix opax = 1. It is clear that

S(0max) = —Trllogl =0,

and by imitating an argument that in ordinary quantum mechanics
proves that a maximally mixed state has maximum possible
entropy, one can prove that every other density matrix p # 1 has

strictly smaller entropy:
S(p) < 0.



One way to make this proof is as follows. Let p # 1 be any density
matrix other than the identity. Then for 0 <t <1,

pt = (1 —1t)+ tpis also a density matrix. Let

f(t) = S(pt) = —Trptlog pt, so S(p) = f(1). Then

F(0)=0, f'(t)<0 for 0<t<1.

The first statement is almost immediate, and to prove the second,

one uses log M = [;°ds (% — SJ:M>, which leads to

#t:—/ ds Tr 1— 1— :—/ dsTrB% <0,
(t) | S+pt( p)s+pt( P) ;

where B is the self-adjoint operator

1/2 12
B = <5J:pt> (1-p) (sjpt) . Since f'(0) =0, "(t) <0, we

get f(1) < 0 so

S(p) <O.



Thus, the system consisting of an observer in a static patch in de
Sitter space has a state of maximum entropy

wmax = WdSe_ﬁdsq/2 V BdSa

consisting of empty de Sitter space with a thermal distribution of
the observer energy. Why did this happen?



The original argument that empty de Sitter space has maximum entropy
is due to Bousso (2000), who argued that this must be true, based on
the Second Law of Thermodynamics, because the static patch is empty
in the far future:
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In the present context, we've defined the static patch by the presence of
the observer, so by definition the observer doesn't leave the static patch
even in the far future. But we can expect that in the far future the static
patch will be empty except for the presence of the observer, and that the
observer will be in thermal equilibrium with the bulk quantum fields, and
that is what we see in the state V.. So the maximum entropy state
that we found is the one suggested by Bousso’s argument.



In a more general spacetime, | do not know an equally explicit
definition of the entropy of a state of the observer algebra.
However, there is a fairly reasonable conjecture, which is inspired
by A. Wall's proof of the generalized second law (2011) and has
some support from recent work of Chen and Penington (and still
more recently Blommaert, Kudler-Flam, and Urbach). The idea is
to interpret the Hartle-Hawking no boundary state as a sort of
universal state of maximum entropy (generalizing empty de Sitter
space, which has maximum entropy among states in a particular de
Sitter spacetime). The expectation value in the no boundary state
a — (Vypla|Vyp) is a state of the observer algebra that | will
denote as o(a). Then if a — p(a) is any state of the observer
algebra, then | suggest that the relative entropy between p and o
for the observer algebra gives - up to sign - a definition of the
entropy of the state seen by the observer:

5(p) = =S(plo).



Here we should not try to normalize the no boundary state, rather
we should just take it as it appears from the gravitational path
integral. One reason for that is that it gives the “right answer.”
Philosophically, another reason is that an observer living in a
particular spacetime doesn’t know how to normalize the no
boundary state, but may understand the no boundary state in the
observer's own spacetime.



The main evidence for the proposal is that in the case of a de Sitter
like spacetime, it gives correctly the A/4G term in the entropy.
This statement reflects the log o term in the relative entropy

—S(plo) = —Tr(plogp — plogo) = S(p) + Trplog o

and is a reinterpretation of the original calculation of Gibbons and
Hawking. Beyond this, and apart from the analogy with the work
of A. Wall, the main appeal of the proposal is that it makes sense
universally as a definition of entropy in a cosmological setting.

The proposal only makes sense if it is true that the no boundary
state is “tracial” for the observer algebra. This is certainly far from
clear, but some arguments to that effect were given in a recent
paper by Blommaert, Kudler-Flam, and Urbach 2505.14771.



The reason that we want the no boundary state to be tracial is
that otherwise we cannot expect —S(p|o) to be a simple entropy
measure:

—S(plo) = S(p) + Trploga,

and unless o is tracial (so that the last term is a constant in any
given spacetime) the last term spoils the entropic interpretation. It
is the last term that for de Sitter spacetimes contributes the A/4G
term that the algebraic definition of entropy of the algebra doesn't
“know" about.



A remark here is that it was an idealization to assume that the
observer lives forever, and it was also an idealization to assume
that that the observer can make arbitrary measurements. | suspect
that we need to make those idealizations if we want to get the
Bekenstein-Gibbons-Hawking entropy as the entropy of a state of
the observer algebra. As “entropy” measures information that
could be obtained in principle about the state, but hasn’t been
obtained, to the extent that we make the model of the observer
more realistic, we will make the entropy smaller.



A lot of things are missing, for example:

* What about an observer (or a civilization) that did not always
exist?

* In this presentation, | used a field theory language; can the
discussion be generalized to string/M-theory?

* Though the definitions make sense regardless, | want to remark
that the presentation that I've given seems most natural for an
observer who because of black hole or cosmological horizons
cannot see the whole universe.

* Finally is it possible to justify the proposal that | stated at the
end?



